Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,( 393+390) : (317. 373)
= (33+1). 390 : 390
= 33+1
=27+1
=28
b,(556+57) : (549+1)
=57. (549+1) : (549+1)
=57= 78125
c,(722+721+720) ; (25+24+32)
= 720. (72+71+1) : [24. (2+1)+32 ]
= 720. 57 : [ 24. 3 +32 ]
= 720. 57 : ( 24+3) . 3
= 720. 57 : 19 . 3
= 720. 57 : 57
= 720
\(\frac{2^3\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}\)
\(=\frac{2^3\cdot5^2\cdot11\cdot11\cdot7}{2^3\cdot5^2\cdot5\cdot7\cdot7\cdot11}\)
\(=\frac{11}{5\cdot7}=\frac{11}{35}\)
ta có 2^3*5^2*11^2*(7/2)^3*5^3*7^2*11
=(2^3*(7/2)^3*7^2)*(5^2*5^3)*(11^2*11)
=(2^3*7^3/2^3*7^2)*5^5*11^3
=7^5*5^5*11^3
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
A = 1 + 3 + 32 + 33 + ... + 360
3A = 3 + 32 + 33 + 34 + ... + 361
3A - A = (3 + 32 + 33 + 34 + ... + 361) - (1 + 3 + 32 + 33 + ... + 360)
2A = 361 - 1
\(A=\frac{3^{61}-1}{2}\)
3A=3+32+33+34+...+360+361
3A - A=(3+32+33+34+...+360+361) - (1+3+32+33+....+360)
2A=361-1
A =\(\frac{3^{61}-1}{2}\)
Mình làm một phần rồi còn lại tự làm nha ^^
\(2^7\cdot4^2\cdot16=2^7\cdot\left(2^2\right)^2\cdot2^4=2^7\cdot2^4\cdot2^4=2^{7+4+4}=2^{15}\)
@_@
học tốt ^^
a) S=1+2+22+...+263
2S=2+22+23+...+264
2S-S=S=264-1
các câu khác tương tự
P = 1 + 3 + 3^2 + 3^3 + 3^4 + ...+ 3^49
=> 3P = 3 + 3^2 + 3^3 + 3^4 + 3^5 + ...+ 3^50
=> 3P-P = 3^50 - 1
2P = 3^50 - 1
\(P=\frac{3^{50}-1}{2}\)
2P=3+3+32+33+...+349+350
2P-P=350-1
=>P=350-1
Vậy biểu thức rút gọn nhất của P là 350-1