Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=\frac{2^5.15^3}{6^3.10^2}=\frac{2^5.\left(3.5\right)^3}{\left(2.3\right)^3.\left(5.2\right)^2}=\frac{2^5.3^3.5^3}{2^5.3^3.5^2}=5\)\(5\)
a)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}.1\)
=\(\frac{3+39}{7+91}\)
=\(\frac{42}{98}\)
=\(\frac{3}{7}\)
b)\(\sqrt{\left(2,5-0,7\right)^2}\)
=\(|2,5-0,7|\)
=2,5-0,7
=1,8
a) \(2x^2y^3.\dfrac{1}{4}xy^3\left(-3\right)xy\)
\(=\left(-3.2.\dfrac{1}{4}\right)x^4y^7\)
\(=\dfrac{-3}{2}x^4y^7\)
\(\Rightarrow Hệ\) số: \(\dfrac{-3}{2}\)
Phần biến: \(x^4y^7\)
b) \(\left(-2x^3y\right)^2.xy^2.\dfrac{1}{5}y^5\)
\(=\dfrac{4}{5}x^7y^9\)
\(\Rightarrow Phần\) biến: \(x^7y^9\)
Hệ số: \(\dfrac{4}{5}.\)
a/ \(2x^2y^3\cdot\dfrac{1}{4}xy^3\left(-3xy\right)\)
\(=\left[2\cdot\dfrac{1}{4}\cdot\left(-3\right)\right]\left(x^2.x.x\right)\left(y^3.y^3.y\right)\)
\(=-\dfrac{3}{2}x^4y^7\)
Phần biến: \(x^4y^7\)
Hệ số: \(-\dfrac{3}{2}\)
b/ \(\left(-2x^3y\right)^2\cdot xy^2\cdot\dfrac{1}{5}y^5=4x^6y^2\cdot xy^2\cdot\dfrac{1}{5}y^5\) \(=4\cdot\dfrac{1}{5}\left(x^6\cdot x\right)\left(y^2\cdot y^2\cdot y^5\right)=\dfrac{4}{5}x^7y^9\)
Phần biến: \(\dfrac{4}{5}\)
Hệ số: \(x^7y^9\)
\(=\left(\left(x+1\right)^2-\left(x-1\right)^2\right)-3\left(x^2-1\right)\)
\(=4x-3x^2+1\)
Ta có :\(B=\frac{3}{2}-\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3-....-\left(\frac{3}{2}\right)^{2014}\)
\(\frac{3}{2}B=\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4-...+\left(\frac{3}{2}\right)^{2014}-\left(\frac{3}{2}\right)^{2015}\)
\(\frac{3}{2}B+B=\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^3+..+\left(\frac{3}{2}\right)^{2014}-\left(\frac{3}{2}\right)^{2015}\) \(+\frac{3}{2}-\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3-...-\left(\frac{3}{2}\right)^{2014}\)
\(\frac{5}{2}B=\frac{3}{2}-\left(\frac{3}{2}\right)^{2015}\)
\(B=\frac{\frac{3}{2}-\left(\frac{3}{2}\right)^{2015}}{\frac{5}{2}}\)
A) 2x2(1-3x)+6x3
=2x2*(1-3x)+2x2*3x
=2x2*(1-3x+3x)
=2x2
B) (x-y)2+(x+y)2+2(x-y)(x+y)
=2(x2-y2)+x2+2xy+y2+x2-2xy+y2
=2x2-2y2+x2+2xy+y2+x2-2xy+y2
=4x2
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
+) Nếu x > 0
B = 3 . ( -1 ) - 2 . ( x + 3 )
B = -3 - 2x - 6
B = -9 - 2x
+) Nếu x < 0
B = 3 . ( - 1 ) - 2 . ( -x - 3 )
B = -3 + 2x + 3
B = 2x