K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)

\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)

\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\) 

\(\Rightarrow1< x< 36\)

 

12 tháng 7 2021

\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)

\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)

\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

\(P=\frac{x+2}{(\sqrt{x})^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(\frac{x+2}{\sqrt{x^3}-1}+\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\sqrt{x^3}-1}+\frac{x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2+x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}=\frac{2x+1}{\sqrt{x^3}-1}-\frac{x+\sqrt{x}+1}{\sqrt{x^3}-1}\)

\(=\frac{2x+1-(x+\sqrt{x})}{\sqrt{x^3}-1}=\frac{x-\sqrt{x}}{\sqrt{x^3}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b) \(P-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{2\sqrt{x}-(x+1)}{3(x+\sqrt{x}+1)}\)

\(=\frac{-(\sqrt{x}-1)^2}{3(x+\sqrt{x}+1)}\)

Với \(x\neq 1, x\geq 0\Rightarrow -(\sqrt{x}-1)^2< 0; x+\sqrt{x}+1>0\)

Do đó: \(P-\frac{1}{3}< 0\Rightarrow P< \frac{1}{3}\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

22 tháng 12 2018

Mình nghĩ là bạn sai đề mình nghĩ là vầy

a ) \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(\Leftrightarrow P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}\)

\(\Leftrightarrow P=\dfrac{x-2\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) Với P = -1

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\)

22 tháng 12 2018

bạn xem lại đề bài xem

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0

26 tháng 7 2018

Sai đề

a: \(M=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Khi a=9/25 thì \(M=\dfrac{\dfrac{3}{5}-4}{\dfrac{3}{5}-2}=\dfrac{-17}{5}:\dfrac{-7}{5}=\dfrac{17}{7}\)

c: Để |M|=1/6 thì M=1/6 hoặc M=-1/6

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=\dfrac{1}{6}\\\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=\dfrac{-1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6\sqrt{a}-24=\sqrt{a}-2\\6\sqrt{a}-24=-\sqrt{a}+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5\sqrt{a}=22\\7\sqrt{a}=26\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=\left(\dfrac{22}{5}\right)^2\\a=\left(\dfrac{26}{7}\right)^2\end{matrix}\right.\)

27 tháng 12 2017

a, \(A=\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\left(đkxđ:x\ge0,x\ne4\right)\)

\(A=\dfrac{2-\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(A=\dfrac{2-\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(A=\dfrac{-2\sqrt{x}+4}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(A=\dfrac{2\left(-\sqrt{x}+2\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(A=\dfrac{2}{\sqrt{x}+2}\)

27 tháng 12 2017

b, \(A=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{1}{4}\)

\(\Rightarrow\sqrt{x}+2=8\)

\(\Leftrightarrow\sqrt{x}=6\)

\(\Leftrightarrow x=36\left(tm\right)\)

Vậy x = 36 thì \(A=\dfrac{1}{4}\)

30 tháng 6 2018

có phải/....

1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)

\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)

2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

30 tháng 6 2018

1.B=\(\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)

18 tháng 5 2018

Câu c mk ko piết làm. Bạn Thoòng cảm

18 tháng 5 2018

Hàm số bậc nhất