Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gợi ý: a 2 − 5 a + 4 = ( a − 1 ) ( a − 4 ) ; a 2 + 3 a − 4 = ( a − 1 ) ( a + 4 )
Ta rút gọn được A = a + 1 a − 4
b) Thay a = 5 vào biểu thức A tìm được A = 6
c) Ta biến đổi A = a + 1 a − 4 = 1 + 5 a − 4
⇒ A ∈ ℤ ⇒ a ∈ − 1 ; 3 ; 5 ; 9
a) a ≠ 0 , a ≠ − 5
b) Ta có A = a 3 + 4 a 2 − 5 a 2 a ( a + 5 ) = a ( a − 1 ) ( a + 5 ) 2 a ( a + 5 ) = a − 1 2
c) Thay a = -1 (TMĐK) vào a ta được A = -1
d) Ta có A = 0 Û a = 1 (TMĐK)
Ta có :
\(A=\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
a) Giá trị của biểu thức A xác định
\(\Leftrightarrow\hept{\begin{cases}a+5\ne0\\a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}}\)
Vậy để giá trị của biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)
ĐKXĐ : \(\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)
b) Ta có :
\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a\left(a^2+2a\right)+2\left(a+5\right)\left(a-5\right)+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^3+2a^2+2\left(a^2-25\right)+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^3+4a^2-50+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)
\(A=\frac{a^2+5a-a-5}{2\left(a+5\right)}\)
\(A=\frac{\left(a+5\right)\left(a-1\right)}{2\left(a+5\right)}=\frac{a-1}{2}\)
c) Thay a = -1 ( Thỏa mãn ĐKXĐ ) vào biểu thức A ta có :
\(A=\frac{-1-1}{2}=-1\)
Vậy tại a = -1 thì giá trị của biểu thức A là - 1
d) Cho A = 0 , ta có :
\(\frac{a-1}{2}=0\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)( Thỏa mãn ĐKXĐ )
Vậy a = 1 thì giá trị của biểu thức A = 0 .
\(a.ĐKXĐ:\)\(2a+10\ne0\) \(a\ne-5\)
\(a\ne0\) \(\Leftrightarrow\)\(a\ne0\) \(\Leftrightarrow\)\(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)
\(2a\left(a+5\right)\ne0\) \(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)
\(b.A=\frac{a\left(a+2\right)}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a\left(a+2\right)a}{2a\left(a+5\right)}+\frac{\left(a-5\right)2\left(a+5\right)}{2a\left(a+5\right)}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a^3+2a^2+\left(2a-10\right)\left(a+5\right)+5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a^3+2a^2+2a^2+10a-10a-50+50-5a}{2a\left(a+5\right)}\)
\(=\frac{a^3+4a^2-5a}{2a\left(a+5\right)}\)
\(=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)
\(=\frac{a\left(a-1\right)\left(a+5\right)}{2a\left(a+5\right)}\)
\(=\frac{a-1}{2}\)với \(x\ne0\)và \(x\ne-5\)
\(c.\)Thay \(a=-1\left(t/mđk\right)\Leftrightarrow\frac{a-1}{2}\Rightarrow\frac{-1-1}{2}\)
\(=-1\left(t/mđk\right)\)
\(d.A=0\Leftrightarrow A=\frac{a-1}{2}=0\)
\(\Rightarrow a-1=2.0\)
\(\Rightarrow a-1=0\)
\(\Rightarrow a=1\left(t/mđk\right)\)
a: \(Q=\left(\dfrac{a^2+4a+4-a^2+4a-4+4a^2}{\left(a-2\right)\left(a+2\right)}\right):\dfrac{a\left(a-3\right)}{5a\left(2-a\right)}\)
\(=\dfrac{4a^2+8a}{\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-5\left(a-2\right)}{a-3}\)
\(=\dfrac{-20a}{a-3}\)
b: Q chia hết cho 20 thì a/a-3 là số nguyên
=>\(a-3\in\left\{1;-1;3;-3\right\}\)
=>a=4 hoặc a=6
\(P=\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
\(=\frac{1}{a.\left(a-1\right)}+\frac{1}{\left(a-1\right).\left(a-2\right)}+\frac{1}{\left(a-2\right).\left(a-3\right)}+\frac{1}{\left(a-3\right).\left(a-4\right)}+\frac{1}{\left(a-4\right).\left(a-5\right)}\)
a) ĐKXĐ: \(a\ne0;1;2;3;4;5;6\)
b) \(P=\frac{1}{a-1}-\frac{1}{a}+\frac{1}{a-2}-\frac{1}{a-1}+\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}\)
\(A=\frac{1}{a-5}-\frac{1}{a}=\frac{a-\left(a-5\right)}{a.\left(a-5\right)}=\frac{5}{a.\left(a-5\right)}\)
c) \(a^3-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2a^2-2a+2a+2=0\)
\(\Leftrightarrow a^2.\left(a+1\right)-2a.\left(a+1\right)+2.\left(a+1\right)=0\)
\(\Leftrightarrow\left(a+1\right).\left(a^2-2a+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1=0\\a^2-2a+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\\left(a-1\right)^2=-1\left(loai\right)\end{cases}}}\)
Thay a=-1 vào P
\(P=\frac{5}{a.\left(a-5\right)}=\frac{5}{-1.\left(-1-5\right)}=\frac{5}{6}\)
\(A=\left(5a-5\right)^2+10\left(a-3\right)\left(1+a\right).3a\)
\(A=25a^2-50a+25+30a\left(a-3+a^2-3a\right)\)
\(A=25a^2-50a+25+30a^2-90a+30a^3-90a^2\)
\(A=30a^3-35a^2-140a+25\)
Ta có: \(A=\left(5a-5\right)^2+10\left(a-3\right)\left(a+1\right)\cdot3a\)
\(=25a^2-50a+25+30a\left(a^2-2a-3\right)\)
\(=25a^2-50a+25+30a^3-60a^2-90a\)
\(=30a^3-35a^2-140a+25\)