K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)

b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)

\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)

11 tháng 7 2021

mk cảm ơn ah

 

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 1 không có cơ sở để tính biểu thức.

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 2:

a. 

$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$

$=[(6x+1)-(6x-1)]^2=2^2=4$

b.

$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$

c.

$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$

$\Rightarrow C=\frac{5^{32}-1}{2}$

5 tháng 6 2017

Đặt biểu thức đã cho là A.

Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)

= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))

Rút gọn triệt tiêu ta được 2A=3^64 - 1

=> A = (3^64 - 1)/2

12 tháng 7 2016

Đặt \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\).Ta có : 

\(=>\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=>2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=>2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

...............................................................................

Cuối cùng \(=>2A=3^{64}-1\).

\(=>A=\frac{3^{64}-1}{2}\)

12 tháng 7 2016

Đặt \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=...........................................\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)

\(\Rightarrow A=\frac{3^{64}-1}{2}\)

24 tháng 5 2017

à bài này dễ mà 

đầu tiên nhá:không biết,tiếp theo:ko biết.Thế thôi còn lại bạn tự giải

9 tháng 7 2017

bạn sử dụng hằng đẳng thức nhé .Mình bít nhg lười viết nắm

1 tháng 10 2017

bạn ơi!! 2+1 chứ, bn xem lại đề cấy

Đặt A=3(22 +1)(24+1)(28+1)(216+1)

=(4-1)(2^2+1)(2^4+1)(28+1)(2^16+1)

=[(2^2-1)(2^2+1)](2^4+1)(2^8+1)(2^16+1)

=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)

Theo mình ý a bn làm đc

2 tháng 11 2015

\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)

\(=\left(6x+1-6x+1\right)^2\)

\(=2^2=4\)

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)