Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn các phân thức:
a) \(\frac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}=\frac{9x^2+12x+4-x^2-4x-4}{x^3-x^2}=\frac{8x^2+8x}{x^3-x^2}=\frac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\frac{8\left(x+1\right)}{x-1}\)
b) \(\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^3-x\right)+\left(2x^2-2\right)}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)
c) \(\frac{x^2+7x+12}{x^2+5x+6}=\frac{\left(x^2+3x\right)+\left(4x+12\right)}{\left(x^2+3x\right)+\left(2x+6\right)}=\frac{\left(x+3\right)\left(x+4\right)}{\left(x++3\right)\left(x+2\right)}=\frac{x+4}{x+2}\)
d) \(\frac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)
a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x4 - 1)(x4 + 1)(x8 + 1)
= (x8 - 1)(x8 + 1)
= x16 - 1
b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)
= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)
= (a8 - 16b4)(a8 + 16b4)
= a16 - 256b8
Rút gọn biểu thức
a).x(2x2-3)-x2(5x+1)+x2
b).3x(x-2)-5x(1-x)-8(x2-3)
c).1/2x2(6x-3)-x(x2+1/2)+1/2(x+4)
Bài 1 :
Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)
\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
=> HĐT ko đc CM
Bài 2 :
a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)
Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)
Xin phép chủ nahf cho mjnh sửa đề:D
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
a,\(\left(a+b\right)^4\)
\(=\left[\left(a+b\right)^2\right]^2\)
\(=\left(a^2+2ab+b^2\right)^2\)
\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)
\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)
\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)
\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
Bài 2:
a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=\left(x^3-8\right)-\left(x-1\right)+7\)
b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)
\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)
\(=8x^3-8-8x^3+1\)
\(=-7\)
Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:
c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)
\(=2^{36}-1\)
b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)
\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)
\(=x^8.\left(-4\right)\)
\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1\)