K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

\(\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{15.16.17}\)

=\(\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{3.5.16.17}\)

=\(\frac{1}{1.2}+\frac{1}{2.4}+\frac{1}{4.5}+...+\frac{1}{5.16.17}\)

28 tháng 4 2017

sai rồi bạn ơi!!! mk biết ko phải là như vậy!

23 tháng 3 2017

Ta có A = \(\frac{1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8}{2.4.6-4.6.8+6.8.10-8.10.12+10.12.14-12.14.16}\)

       A = \(\frac{1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8}{\left(1.2.3\right).2-\left(2.3.4\right).2+\left(3.4.5\right).2-\left(4.5.6\right).2+\left(5.6.7\right).2-\left(6.7.8\right).2}\)

       A = \(\frac{1.\left(1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8\right)}{2.\left(1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8\right)}\)

        A = \(\frac{1}{2}\)

9 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)

\(A=1-\frac{1}{2^{20}}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\)

\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\right)\)

\(2B=1-\frac{1}{3^{21}}\)

\(B=\frac{1-\frac{1}{3^{21}}}{2}\)

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)

\(C=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{20\cdot21}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{420}\right)\)

\(C=\frac{1}{2}\cdot\frac{209}{420}\)

\(C=\frac{209}{480}\)

3 tháng 3 2019

\(B=-\frac{3}{5}\left(\frac{3}{8}-2+\frac{5}{8}\right)\)

\(B=-\frac{3}{5}.\left(-1\right)=\frac{3}{5}\)

\(C=\frac{8}{5}.\frac{3}{4}-\left(\frac{11}{20}-\frac{1}{4}\right).\frac{7}{3}\)

\(C=\frac{6}{5}-\frac{3}{10}.\frac{7}{3}\)

\(C=\frac{6}{5}-\frac{7}{10}=\frac{1}{2}\)

5 tháng 5 2017

\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{2015.2016.2017}\)

\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\frac{3}{2}.\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\frac{3}{2}.\left(\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)

\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)

\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)

\(A=\frac{3}{4}-\frac{3}{2.2016.2017}< 1\)

gọi biểu thức là A

ta có : 

A=3/1.2.3 + 5/2.3.4 +  7/3.4.5 +....+ 2017/1008.1009.1010

A= (1.2/1.2.3 + 2.2/2.3.4 + 3.2/3.4.5 + ... + 1008.2/1008.1009.1010) + (1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/1008.1009.1010)

A=(2/2.3 + 2/3.4 + 2/4.5 +...+ 2/1009.1010 + 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5 + ... + 1/1008.1009 - 1/1009.1010

A=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/1009-1/1010)+1/2.(1/2-1/1009.1/1010)

A<2.1/2 + 1/2.1/2 = 1+1/4 = 5/4 

OK nhớ tk cho mình nhé ( dấu này / là dấu phần nhé) chúc bạn học tốt

10 tháng 4 2019

thank

2 tháng 4 2019

Giải :

\(\text{S}=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(\text{S}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{998}-\frac{1}{999}+\frac{1}{999}-\frac{1}{1000}\)

\(\text{S}=1-\frac{1}{1000}=\frac{999}{1000}\)

2 tháng 4 2019

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{998.999.1000}\)

  \(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.1000}\right)\)

  \(=\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{1000-998}{998.999.1000}\right)\)

 \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{998.999}-\frac{1}{999.1000}\right)\)

 \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{999.1000}\right)\)

 \(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{999000}\right)\)

 \(=\frac{1}{2}.\frac{499499}{999000}\)

 \(=\frac{499499}{1998000}\)

Study well ! >_<