K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

17 tháng 6 2019

\(Đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\\left(\sqrt{x}-1\right)^2>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>1\end{cases}\Rightarrow}x>1}\)

\(C=\)\(\frac{1}{\sqrt{x}}+\frac{3}{x\sqrt{x}}+1+\frac{2}{x-\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}}+\frac{3}{x\sqrt{x}}+1+\frac{2}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{x\left(\sqrt{x}-1\right)^2}{x\sqrt{x}\left(\sqrt{x}-1\right)^2}+\frac{3\left(\sqrt{x}-1\right)^2}{x\sqrt{x}\left(\sqrt{x}-1\right)^2}+\frac{x\sqrt{x}\left(\sqrt{x}-1\right)^2}{x\sqrt{x}\left(\sqrt{x}-1\right)^2}+\frac{2x.\sqrt{x}}{x\sqrt{x}\left(\sqrt{x-1}\right)^2}\)

\(=x\left(\sqrt{x}-1\right)^2+3\left(\sqrt{x}-1\right)^2+x\sqrt{x}\left(\sqrt{x}-1\right)^2+2x.\sqrt{x}\)

.....