Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với 1 ≤ x < 2
A = (x + 3)/2
Với x ≥ 2
A = (x + 3)/[2√(x - 1)]
b/ Xét 1 ≤ x < 2
A ≥ (3 + 1)/2 = 2
Xét x ≥ 2
A = 2 + [√(x - 1) - 2]²/[2√(x - 2)] ≥ 2
Kết hợp 2 TH thì min là 2 khi x = 1 hoặc x = 5
1)
DKCĐ: a>0,\(a\ne1\)
\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{a}-\dfrac{1}{a}\right)\)\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\right)\)\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{1+a+1-a+2\sqrt{\left(1+a\right)\left(1-a\right)}}{\left(1+a\right)-\left(1-a\right)}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\)\(=\dfrac{2\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)}{2a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\sqrt{\left(1+a\right)\left(1-a\right)}+1}{a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)\left(\sqrt{\left(1+a\right)\left(1-a\right)}-1\right)}{a^2}\\ =\dfrac{\left(1+a\right)\left(1-a\right)-1}{a^2}\\ =\dfrac{1-a^2-1}{a^2}\\ =\dfrac{-a^2}{a^2}\\ =-1\)
\(P=\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{4-6\sqrt{a}}{1-a}-\frac{-3}{\sqrt{a}+1}\)
ĐK : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
a) \(P=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{a-1}+\frac{3}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}+4-6\sqrt{a}+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+1}\)
Với \(a=4-2\sqrt{3}\)( tmđk \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))
\(P=\frac{\sqrt{4-2\sqrt{3}}-1}{\sqrt{4-2\sqrt{3}}+1}\)
\(=\frac{\sqrt{3-2\sqrt{3}+1}-1}{\sqrt{3-2\sqrt{3}+1}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}-1}{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-1}{\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)
\(=\frac{\left|\sqrt{3}-1\right|-1}{\left|\sqrt{3}-1\right|+1}\)
\(=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)
b) \(P=\frac{\sqrt{a}-1}{\sqrt{a}+1}=\frac{\sqrt{a}+1-2}{\sqrt{a}+1}=1-\frac{2}{\sqrt{a}+1}\)( ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))
Để P đạt giá trị nguyên => \(\frac{2}{\sqrt{a}+1}\)nguyên
=> \(2⋮\sqrt{a}+1\)
=> \(\sqrt{a}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> \(\sqrt{a}\in\left\{0;1\right\}\)< đã loại hai trường hợp âm >
=> \(a\in\left\{0\right\}\)< loại trường hợp a = 1 >
Vậy với a = 0 thì P có giá trị nguyên
Ta có: \(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{3}\right)^2}{3}=3\)
=> \(3abc\ge3\)=> \(abc\ge1\) ( 1)
Lại có: \(a^4+b^4+c^4+1\ge4\sqrt[4]{a^4b^4c^4}=4\left|abc\right|=4abc\)
=> \(3abc+1\ge4abc\Rightarrow abc\le1\)(2)
Từ (1); (2) => abc = 1
khi đó a = b = c = 1
=> P = 1^2019 + 1 ^2019 + 1^2019 = 3
\(DK:x\ge1\)
\(A=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}+2019\)
\(=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|+2019\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|+2019\ge|\sqrt{x-1}+1+1-\sqrt{x-1}|+2019=2021\)
Dau '=' xay ra khi \(\left(\sqrt{x-1}+1\right)\left(1-\sqrt{x-1}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x-1}+1\ge0\\1-\sqrt{x-1}\ge0\end{cases}\Leftrightarrow x=2\left(n\right)}\)
TH2:
\(\hept{\begin{cases}\sqrt{x-1}+1\le0\\1-\sqrt{x-1}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}\le-1\\\sqrt{x-1}\ge1\end{cases}\left(l\right)}}\)
Vay \(A_{min}=2021\)khi \(x=2\)
Do \(ab+bc+ac=3abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Áp dụng BĐT Cauchy cho 3 số \(\frac{1}{a};\frac{2}{b};\frac{3}{c}\) , ta có :
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=\frac{1}{a}+\frac{4}{2b}+\frac{9}{3c}\ge\frac{\left(1+2+3\right)^2}{a+2b+3c}=\frac{36}{a+2b+3c}\)
\(\Rightarrow\frac{1}{a+2b+3c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\left(1\right)\)
CMTT , ta có : \(\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\); \(\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow F\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}+\frac{2}{a}+\frac{3}{b}+\frac{1}{c}+\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\)
\(=\frac{1}{36}.6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}.3=\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
a)
\(A=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}+\frac{4\sqrt{a}-4}{4-\sqrt{a}}\)
\(=\frac{a+2\sqrt{a}+3\sqrt{a}+6-a-2\sqrt{a}-\sqrt{a}+2}{a-4}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{a-a+\left(2+3-2-1\right)\sqrt{a}+6+2}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)
\(=\frac{2\sqrt{a}+8}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)
\(=\frac{2\sqrt{a}+8-4\sqrt{a}+4}{\left(a-4\right)^2}\)
\(=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
b) thấy A = 9 vào biểu thức , ta có :
\(9=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
\(< =>\frac{9\left(a-4\right)^2}{\left(a-4\right)^2}=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
\(< =>9\left(a-4\right)^2=-2\sqrt{a}+12\)
\(< =>9.\left(a^2-2a.4+4^2\right)=-2\sqrt{a}+12\)
\(< =>9a^2-72a+144=-2\sqrt{a}+12\)
\(< =>9a^2-72a+2\sqrt{a}=12-144\)
\(< =>\sqrt{a}\left(9\sqrt{a}^3-72\sqrt{a}+2\right)=-132\)
\(\)
TỚI ĐÂY AI BIẾT THÌ GIẢI TIẾP NHA , MÌNH HẾT BIẾT CÁCH LÀM RỒI