Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
1,\(4\sqrt{5}+2\sqrt{5}-\sqrt{5}-15\sqrt{5}=-10\sqrt{5}\)
2,\(8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
3,\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}=33\)
4,\(7\sqrt{7a}+3\sqrt{7a}-2\sqrt{7a}=8\sqrt{7a}\)
5,\(-6\sqrt{a}-\sqrt{6a}+\sqrt{6a}=-6\sqrt{a}\)
6,\(8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
a) \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
b) \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)
c) \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
d) \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)
\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)
\(=\sqrt{5+\sqrt{2}}\)
e) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)
\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)
\(=2+\sqrt{9-4\sqrt{5}}\)
\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2+\sqrt{5}-2=\sqrt{5}\)
f) đề sai nhé:
\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)
g) \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)
h) \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)
1.\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}=3\sqrt{2}\)
2.\(=5\sqrt{5}+4\sqrt{5}-9\sqrt{5}=0\)
1,
\(2\sqrt{5}-\sqrt{125}-\sqrt{80}\\ =2\sqrt{5}-\sqrt{25\cdot5}-\sqrt{16\cdot5}\\ =2\sqrt{5}-5\sqrt{5}-4\sqrt{5}\\ =-7\sqrt{5}\)
2,
\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\\ =3\sqrt{2}-\sqrt{4\cdot2}+\sqrt{25\cdot2}-4\sqrt{16\cdot2}\\ =3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}\\=-10\sqrt{2}\)
3,
\(\sqrt{18}-3\sqrt{80}-2\sqrt{50}+2\sqrt{45}\\ =\sqrt{9\cdot2}-3\sqrt{16\cdot5}-2\sqrt{25\cdot2}+2\sqrt{9\cdot5}\\ =3\sqrt{2}-12\sqrt{5}-10\sqrt{2}+6\sqrt{5}\\ =-7\sqrt{2}-6\sqrt{5}\)
4,
\(\sqrt{27}-2\sqrt{3}+2\sqrt{48}-3\sqrt{75}\\ =\sqrt{9\cdot3}-2\sqrt{3}+2\sqrt{16\cdot3}-3\sqrt{25\cdot2}\\ =3\sqrt{3}-2\sqrt{3}+8\sqrt{3}-15\sqrt{3}\\ =-6\sqrt{3}\)
5,
\(3\sqrt{2}-4\sqrt{18}+\sqrt{32}-\sqrt{50}\\ =3\sqrt{2}-4\sqrt{9\cdot2}+\sqrt{16\cdot2}-\sqrt{25\cdot2}\\ =3\sqrt{2}-12\sqrt{2}+4\sqrt{2}-5\sqrt{2}\\ =-10\sqrt{2}\)
6,
\(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\\ =2\sqrt{3}-\sqrt{25\cdot3}+2\sqrt{4\cdot3}-\sqrt{49\cdot3}\\ =2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\\ =-6\sqrt{3}\)
7,
\(\sqrt{20}-2\sqrt{45}-3\sqrt{80}+\sqrt{125}\\ =\sqrt{4\cdot5}-2\sqrt{9\cdot5}-3\sqrt{16\cdot5}+\sqrt{25\cdot5}\\ =2\sqrt{5}-6\sqrt{5}-12\sqrt{5}+5\sqrt{5}\\ =-11\sqrt{5}\)
8,
\(6\sqrt{12}-\sqrt{20}-2\sqrt{27}+\sqrt{125}\\ =6\sqrt{4\cdot3}-\sqrt{4\cdot5}-2\sqrt{9\cdot3}+\sqrt{25\cdot5}\\ =12\sqrt{3}-2\sqrt{5}-6\sqrt{3}+5\sqrt{5}\\ =6\sqrt{3}+3\sqrt{5}\\ =3\left(2\sqrt{3}+\sqrt{5}\right)\)
9,
\(4\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\\ =4\sqrt{4\cdot6}-2\sqrt{9\cdot6}+3\sqrt{6}-\sqrt{25\cdot6}\\ =8\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}=0\)
10,
\(2\sqrt{18}-3\sqrt{80}-5\sqrt{147}+5\sqrt{245}-3\sqrt{98}\\ =2\sqrt{9\cdot2}-3\sqrt{16\cdot5}-5\sqrt{49\cdot3}+5\sqrt{49\cdot5}-3\sqrt{49\cdot2}\\ =6\sqrt{2}-12\sqrt{5}-35\sqrt{3}+35\sqrt{5}-21\sqrt{2}\\ =-15\sqrt{2}-35\sqrt{3}+23\sqrt{5}\)
\(I=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-5\sqrt{3}.\sqrt{3^2}+2\sqrt{2^2}.\sqrt{3}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)
\(=-5\sqrt{3}.\dfrac{1}{\sqrt{3}}\)
\(=-5\)
\(K=\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=\sqrt{5^2.5}-4\sqrt{3^2.5}+3\sqrt{2^2.5}-\sqrt{4^2.5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=\sqrt{5}.\left(5-12+6-4\right)\)
\(=-5\sqrt{5}\)
\(L=2\sqrt{9}+\sqrt{25}-5\sqrt{4}\)
\(=2\sqrt{3^2}+\sqrt{5^2}-5\sqrt{2^2}\)
\(=2.3+5-5.2\)
\(=1\)
\(N=2\sqrt{32}-5\sqrt{27}-4\sqrt{8}+3\sqrt{75}\)
\(=2.4\sqrt{2}-5.3\sqrt{3}-4.2\sqrt{2}+3.5\sqrt{3}\)
\(=8\sqrt{2}-8\sqrt{2}-15\sqrt{3}+15\sqrt{3}\)
\(=0\)
\(O=2\sqrt{3.5^2}-3\sqrt{3.2^2}+\sqrt{3.3^2}\)
\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)
\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)
\(=7\sqrt{3}\)
\(L=\dfrac{2\sqrt{3}-15\sqrt{3}+8\sqrt{3}}{\sqrt{3}}=2-15+8=-5\)
\(K=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)
L=2*3+5-5*2=5-4=1
N=8căn 2-8căn2-15căn3+15căn 3=0
O=10căn 3-6căn3+3căn3=7căn 3