K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

\(A=\dfrac{ab+10b+25}{ab+5a+5b+25}+\dfrac{bc+10c+25}{bc+5b+5c+25}+\dfrac{ca+10a+25}{ac+5a+5c+25}\)

\(=\dfrac{\left(ab+5b\right)+\left(5b+25\right)}{\left(ab+5a\right)+\left(5b+25\right)}+\dfrac{\left(bc+5c\right)+\left(5c+25\right)}{\left(bc+5b\right)+\left(5c+25\right)}+\dfrac{\left(ca+5a\right)+\left(5a+25\right)}{\left(ac+5a\right)+\left(5c+25\right)}\)

\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{a\left(c+5\right)+5\left(c+5\right)}\)

\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)

\(=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)

\(=\left(\dfrac{b}{b+5}+\dfrac{5}{b+5}\right)+\left(\dfrac{a}{a+5}+\dfrac{5}{a+5}\right)+\left(\dfrac{c}{c+5}+\dfrac{5}{c+5}\right)\)

\(=1+1+1=3\) (\(a;b;c\ne-5\))

6 tháng 2 2018

\(A=\dfrac{ab+5b+5b+25}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{bc+5c+5c+25}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{ca+5a+5a+25}{a\left(c+5\right)+5\left(c+5\right)}\)

\(A=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)

\(A=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)

\(A=\dfrac{a+5}{a+5}+\dfrac{b+5}{b+5}+\dfrac{c+5}{c+5}=1+1+1=3\)

7 tháng 11 2018

\(\dfrac{a}{ab+bc+ac+c^2}=\dfrac{a}{\left(a+c\right)\left(b+c\right)}\)

\(\dfrac{b}{bc+ac+ab+a^2}=\dfrac{b}{\left(a+b\right)\left(a+c\right)}\)

\(\dfrac{c}{ac+ab+b^2+bc}=\dfrac{c}{\left(a+b\right)\left(b+c\right)}\)

11 tháng 11 2018

tiep di bn ơi

1 tháng 3 2019

Ta chứng minh bổ đề sau:

\(\dfrac{5b^3-a^3}{ab+3b^2}\le2b-a\)

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3b^2a\)

\(\Leftrightarrow a^3+b^3-a^2b-b^2a\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng, vậy ta có

\(M\le2a-b+2b-c+2c-a=a+b+c\)Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Xét \(a^3+b^3-ab(a+b)=(a+b)(a-b)^2\geq 0, \forall a,b>0\)

Do đó \(a^3+b^3\geq ab(a+b)\) với mọi $a,b>0$

\(\Rightarrow b^3\geq ab(a+b)-a^3\)

\(\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{5a^3-[ab(a+b)-a^3]}{ab+3a^2}=\frac{6a^2-b(a+b)}{b+3a}\)

hay \(\frac{5a^3-b^3}{ab+3a^2}\leq \frac{(2a-b)(3a+b)}{b+3a}=2a-b\)

Hoàn toàn tương tự ta có:

\(\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\leq a+b+c\leq 2018\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{2018}{3}\)

3 tháng 2 2018

Chuẩn hóa: a+b+c=3k

\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)

Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3

ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)

Ta CM BĐT:

\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)

CMTT\(\Rightarrow\)ĐPCM

NV
3 tháng 10 2021

\(404=3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)-2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\ge\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-\dfrac{2}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\le1212\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le2\sqrt{303}\)

Ta có:

\(5a^2+2ab+2b^2=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow P\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{2}{c}+\dfrac{1}{a}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{2\sqrt{303}}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Lời giải:
Do $a+b+c=5$ nên:

$Q=\frac{a}{ab+c(a+b+c)}+\frac{b}{bc+a(a+b+c)}+\frac{c}{ca+b(a+b+c)}=\frac{a}{(c+b)(c+a)}+\frac{b}{(a+b)(a+c)}+\frac{c}{(b+c)(b+a)}$

$=\frac{a(a+b)+b(b+c)+c(c+a)}{(a+b)(b+c)(c+a)}$

Theo BĐT AM-GM:

$(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3=\left(\frac{2(a+b+c)}{3}\right)^3=\frac{1000}{27}$

Và:

$a(a+b)+b(b+c)+c(c+a)=(a+b+c)^2-(ab+bc+ac)\geq (a+b+c)^2-\frac{(a+b+c)^2}{3}=\frac{50}{3}$

Do đó:

$Q\geq \frac{\frac{50}{3}}{\frac{1000}{27}}=\frac{9}{20}$

Vậy $Q_{\min}=\frac{9}{20}$. Dấu "=" xảy ra khi $a=b=c=\frac{5}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:
Do $a+b+c=5$ nên:

$Q=\frac{a}{ab+c(a+b+c)}+\frac{b}{bc+a(a+b+c)}+\frac{c}{ca+b(a+b+c)}=\frac{a}{(c+b)(c+a)}+\frac{b}{(a+b)(a+c)}+\frac{c}{(b+c)(b+a)}$

$=\frac{a(a+b)+b(b+c)+c(c+a)}{(a+b)(b+c)(c+a)}$

Theo BĐT AM-GM:

$(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3=\left(\frac{2(a+b+c)}{3}\right)^3=\frac{1000}{27}$

Và:

$a(a+b)+b(b+c)+c(c+a)=(a+b+c)^2-(ab+bc+ac)\geq (a+b+c)^2-\frac{(a+b+c)^2}{3}=\frac{50}{3}$

Do đó:

$Q\geq \frac{\frac{50}{3}}{\frac{1000}{27}}=\frac{9}{20}$

Vậy $Q_{\min}=\frac{9}{20}$. Dấu "=" xảy ra khi $a=b=c=\frac{5}{3}$

22 tháng 11 2019

Với dự đoán P đạt Min tại \(a=b=c=\frac{5}{3}\Rightarrow P=\frac{9}{20}\). Nên ta chứng minh \(P\ge\frac{9}{20}\).Thật vậy:\(P=\Sigma\frac{a}{ab+5c}=\Sigma\frac{a}{\left(a+c\right)\left(b+c\right)}=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a+b+c\right)^2-\frac{\left(a+b+c\right)^2}{3}}{\left[\frac{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}{3}\right]^3}=\frac{9}{20}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{5}{3}\)

Vậy..