K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+...+\frac{2014}{\sqrt{99}+\sqrt{100}}\)

\(=2014.\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\right)\)

\(=2014.\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=2014.\left(\sqrt{100}-\sqrt{1}\right)=2014.9=18126\)

5 tháng 10 2017

\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+.....+\frac{2014}{\sqrt{9}+\sqrt{100}}\)

\(=\sqrt{1}-\sqrt{2}+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{999}\)

\(=\sqrt{100}-1\)

\(=9\)

P/s: Không chắc à

5 tháng 10 2017

Giải 2 bài luôn

Rút gọn:

\(Y=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}-\sqrt{100}}\)

\(Y=\sqrt{2}-\sqrt{1}+\sqrt{2}-\sqrt{3}+....+\sqrt{100}-\sqrt{99}\)

\(Y=\sqrt{10}-1\)

\(Y=9\)

Tính:

\(Y=\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+....+\frac{2014}{\sqrt{99}+\sqrt{100}}\)

\(Y=\sqrt{2}-\sqrt{1}+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(Y=\sqrt{10}-1\)

\(Y=9\)

\(Y=2014.9\)

\(Y=18126\)

5 tháng 10 2017

Y=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=-1+\sqrt{100}=\sqrt{100}-1=10-1=9\)

31 tháng 7 2015

\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)

=\(-\sqrt{2}+\sqrt{2015}\)

20 tháng 7 2018

\(A=\frac{\left(2\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\sqrt{5}+2\right)\left(\sqrt{5}+1\right)-\left(10+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{5-1}-1\)

\(=\frac{10+2\sqrt{5}+2\sqrt{5}+2-10\sqrt{5}+10-10+2\sqrt{5}}{4}-1\)

\(=\frac{12-4\sqrt{5}}{4}-1\)

\(=\frac{4\left(3-\sqrt{5}\right)}{4}-1\)

\(=3-\sqrt{5}-1\)

\(=2-\sqrt{5}\) 

(còn biểu thức B hình như sai đề, bạn coi lại đề)

23 tháng 7 2018

đề câu B nè : \(B=\sqrt{\left(1-\sqrt{2014}\right)^2}.\sqrt{2015+2\sqrt{2014}}\)

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

16 tháng 7 2016

Ta xét biểu thức sau : 

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left[\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right]}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(với n > 0)

Áp dụng : \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+...+\left(\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right)\)

\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

16 tháng 7 2016

why the heck difficult

4 tháng 7 2017

\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=-1+\sqrt{100}=\sqrt{100}-1=10-1=9\)

1 tháng 7 2018

A = \(\frac{1}{1+\sqrt{2}}\) + \(\frac{1}{\sqrt{2}+\sqrt{3}}\) +  . . . . . . . .  . + \(\frac{1}{\sqrt{99+\sqrt{100}}}\)

\(\sqrt{2}\) -  1 + \(\sqrt{2}\) - \(\sqrt{3}\) + . . . . . . .  + \(\sqrt{100}\) - \(\sqrt{99}\)

= - 1 + \(\sqrt{100}\) =  \(\sqrt{100}\) - 1 = 10 - 1 = 9