K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{3^{100}-1}{2}\)

5 tháng 9 2016

hình như sai đề bài ấy nhỉ

3 tháng 2 2019

a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012

2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013

3M=2^0+2^2013

M=(2^0+2^2013)÷3

Vậy.......

b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012

3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013

4N=3-3^2013

N=(3-3^2013)÷4

Vậy........

K tao nhé ko lên lớp tao đánh m😈😈😈

3 tháng 2 2019

Bt dễ thế mà ko làm dc😂😂😂😂😂

5 tháng 9 2018

Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

=> 2A - A = 1 - \(\frac{1}{2^{100}}\)

<=> A = 1 - \(\frac{1}{2^{100}}\)

5 tháng 9 2018

\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)

\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)

\(A=1-\frac{1}{2^{100}}\)

Ta có :

B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1

=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )

=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]

=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )

=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]

=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )

=> 3B = 2101 - 1

=> B = \(\frac{2^{101} - 1}{3}\)

gọi dãy số là A, ta có:

A = 2100 - 299 - ...... - 21

2A = 2101 - 2100 - .... - 22

2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )

A = 2101 - 2

28 tháng 9 2023

\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\\ \Rightarrow3A=3+3^2+3^3+...+3^{100}+3^{101}\\ \Rightarrow3A-A=3^{101}-1\\ \Rightarrow2A=3^{101}-1\\ \Rightarrow A=\left(3^{101}-1\right).\dfrac{1}{2}\\ \Rightarrow\dfrac{3^{101}}{2}-\dfrac{1}{2}.\)

28 tháng 9 2023

\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)

Ta có: \(3A=3+3^2+3^3+...+3^{99}+3^{100}\)

Khi đó: \(3A-A=3+3^2+3^3+...+3^{99}+3^{100}+3^{101}-\left(1+3+3^2+3^3+...+3^{99}+3^{100}\right)\)

\(=3^{101}-1\)

\(\Leftrightarrow2A=3^{101}-1\)

Vậy \(A=\left(3^{101}-1\right):2\)

12 tháng 8 2020

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

=>  \(A=2-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)

12 tháng 8 2020

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(2A=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)

\(2A-A=A\)

\(=\left(3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2012}}\)

\(=2-\frac{1}{2012^2}\)

 \(B=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)

\(B=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\cdot\left(\frac{6}{12}-\frac{4}{12}-\frac{2}{12}\right)\)

\(B=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\cdot0=0\)

14 tháng 4 2023

b,     B        =                       \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\)  + \(\dfrac{1}{2^3}\) -   \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

\(\times\)  B       =                 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

\(\times\) B + B  =                1  -  \(\dfrac{1}{2^{100}}\)

3B             =              ( 1 - \(\dfrac{1}{2^{100}}\)

             B =               ( 1 - \(\dfrac{1}{2^{100}}\)) : 3

14 tháng 4 2023

       A              =          1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\) 

A\(\times\)  3             =   3 +  1 + \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+  \(\dfrac{1}{3^{n-1}}\) 

\(\times\) 3 - A        = 3 - \(\dfrac{1}{3^n}\)

       2A           = 3  - \(\dfrac{1}{3^n}\)

         A           = ( 3 - \(\dfrac{1}{3^n}\)) : 2

11 tháng 5 2017

\(T=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(T=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

\(T=\frac{1}{2}.100\)

\(T=50\)