Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+) Nếu x > 0 thì A = x + x = 2x
+) Nếu x = 0 thì A = 0 + 0 = 0
+) Nếu x < 0 thì A = -x + x = 0
b) B = 2 ( 3x - 1 ) - | 5 - x |
B = 6x - 2 - | 5 - x |
Xét 3 t/h như câu a)
a)+) Nếu x > 0 thì A = x + x = 2x
+) Nếu x = 0 thì A = 0 + 0 = 0
+) Nếu x < 0 thì A = -x + x = 0
b) B = 2 ( 3x - 1 ) - | 5 - x |
B = 6x - 2 - | 5 - x |
Xét 3 t/h như câu a)
Với x >= 2 biểu thức có dạng :
\(B=x-2-3\left(2x+1\right)=x-2-6x-3=-5x-5\)
Với x < 2 biểu thức có dạng :
\(B=2-x-3\left(2x+1\right)=2-x-6x-3=-1-7x\)
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
a) \(\left|x\right|+x\)
Vì \(\left|x\right|\ge0\) nên ta có 3TH:
TH1: \(x>0\)
\(\Rightarrow\left|x\right|+x=2x\)
TH2: \(x=0\)
\(\Rightarrow\left|x\right|+x=0\)
TH3: \(x< 0\)
\(\Rightarrow\left|x\right|+x=0\)
b) \(N=\left|x\right|:x\)
Vì \(\left|x\right|\ge0\) và \(x\ne0\) nên ta có 2TH:
TH1: \(x>0\)
\(\Rightarrow\left|x\right|:x=1\)
TH2: \(x< 0\)
\(\Rightarrow\left|x\right|:x=-1\)