K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

(x+2)(x-2) - (x-4)(x+1)

=(x2-4)-(x2+x-4x-4)

=x2-4-x2-x+4x+4

=3x

10 tháng 12 2020

Bài làm 

\(\left(x+2\right)\left(x-2\right)-\left(x-4\right)\left(x+1\right)\)

\(=x^2-4-\left(x^2+x-4x-4\right)\)

\(=x^2-4-x^2+3x+4=3x\)

26 tháng 2 2022

(-3).8/8.6 rút gọn

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`

19 tháng 6 2015

x(x+4)(x-4)-(x^2+1)(x^2-1)=x(x2-16)-(x4-1)

=x3-16x-x4+1

27 tháng 11 2015

=x2-4-x2+x=x-4

1 tháng 7 2017

1. a) ... \(=\left(x+y\right)^2-4^2\)

b) ... \(=x^2-\left(y-6\right)^2\)

2. a) ...\(=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=\left(1-4x\right)\left(1+4x\right)\)

19 tháng 9 2019

\(A=\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)

     \(=\frac{x\left(x+3\right)-\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)

        \(=\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)

           \(=\frac{1}{x\left(x+1\right)}\)

Chúc bạn học tốt !!!

19 tháng 9 2019

Ta có: A = \(\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}\)

=> A = \(\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)

=> A = \(\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{x\left(x+3\right)-\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

=> A  = \(\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)

=> A = \(\frac{1}{x\left(x+1\right)}\) (Đk: x \(\ne\)0 hoặc x \(\ne\)-1)