Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
1+1/A+1/a2+1/a3+1+.../an+1
=1(1/A/a2/a3/...an)
=1.(1/a1+2+3+...+n)
=1.(1/a6+...+n)
=a6+...+n
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(A=2A-A=2-\frac{1}{2^{2011}}=\frac{2^{2012}-1}{2^{2011}}\)
Nhầm
\(A=2A-A=2-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
b, B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2 \(\times\) B = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2 \(\times\) B + B = 1 - \(\dfrac{1}{2^{100}}\)
3B = ( 1 - \(\dfrac{1}{2^{100}}\))
B = ( 1 - \(\dfrac{1}{2^{100}}\)) : 3
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
A\(\times\) 3 = 3 + 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+ \(\dfrac{1}{3^{n-1}}\)
A \(\times\) 3 - A = 3 - \(\dfrac{1}{3^n}\)
2A = 3 - \(\dfrac{1}{3^n}\)
A = ( 3 - \(\dfrac{1}{3^n}\)) : 2
\(S=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^n}\)
=>\(3S=3.\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=3+1+\frac{1}{3}+...+\frac{1}{3^{n-1}}\)
=>\(3S-S=\left(3+1+\frac{1}{3}+.....+\frac{1}{3^{n-1}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)
=>\(2S=3+1+\frac{1}{3}+....+\frac{1}{3^{n-1}}-1-\frac{1}{3}-\frac{1}{3^2}-....-\frac{1}{3^n}=3-\frac{1}{3^n}=\frac{3^{n+1}-1}{3^n}\)
=>\(S=\frac{3^{n+1}-1}{3^n}:2=\frac{3^{n+1}-1}{3^n.2}\)
Vậy.................