Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ge0\) và \(x\ne1\)
\(A=\left(\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\sqrt{x}+2}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}+2}\)
\(B=\sqrt{x^2+\frac{1}{x^2}-2}-\sqrt{x^2+\frac{1}{x}+2}=\sqrt{\left(x-\frac{1}{x}\right)^2}-\sqrt{\left(x+\frac{1}{x}\right)^2}=x-\frac{1}{x}-x-\frac{1}{x}=-\frac{2}{x}\)
\(B=\sqrt{\left(x-\frac{1}{x}\right)^2}-\sqrt{\left(x+\frac{1}{x}\right)^2}=\left|x-\frac{1}{x}\right|-\left|x+\frac{1}{x}\right|=\frac{\left|x^2-1\right|}{\left|x\right|}-\frac{x^2+1}{\left|x\right|}=\frac{\left|x^2-1\right|-\left(x^2+1\right)}{\left|x\right|}\)
x2 - 1 > 0 <=> (x-1).(x+1) > 0 => x + 1 < 0 hoặc x - 1> 0 <=> x <-1 hoặc x > 1
Vậy
+) Khi x < -1 => B = \(\frac{x^2-1-\left(x^2+1\right)}{-x}=\frac{2}{x}\)
+) Khi -1< x< 0 thì B = \(\frac{-\left(x^2-1\right)-\left(x^2+1\right)}{-x}=\frac{-2x^2}{-x}=2x\)
+) Khi 0 < x < 1 thì B = \(\frac{-\left(x^2-1\right)-\left(x^2+1\right)}{x}=\frac{-2x^2}{x}=-2x\)
+) Khi x > 1 thì B = \(\frac{\left(x^2-1\right)-\left(x^2+1\right)}{x}=\frac{-2}{x}\)
ĐK để phân thức XĐ : x khác 1 và x> 0
Đặt \(B=\left(\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\right)\) ( Đây là mình vừa đặt vừa làm mẫu thức chung nhe)
=> \(B=\left(\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\right)\)
=>\(B=\frac{2\sqrt{x}+2x}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)
A = \(B:\frac{\sqrt{x}}{\sqrt{x+1}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{2}{x-1}\)
B, Bạn tự làm ý B nhe
HD để A nguyên => x - 1 thuộc ước của 2 mà 2 có các ước là +-1 và +-2
(+) với x-1 = 2 => x = 3
............................
1) \(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(A=\frac{x+2-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{1}{\left(x-\sqrt{x}+1\right)}=\frac{-1}{x+\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)
\(A=\frac{-\left(x-\sqrt{x}+1\right)+\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(x+1\right)^2-\left(\sqrt{x}\right)^2}=\frac{2\sqrt{x}}{x^2+x+1}\)
2) Xét hiệu \(A-\frac{1}{3}=\frac{2\sqrt{x}}{x^2+x+1}-\frac{1}{3}=\frac{6\sqrt{x}-\left(x^2+x+1\right)}{3\left(x^2+x+1\right)}\)
Mẫu luôn > 0
Tử chưa chắc < 0 .Ví dụ lấy x = 2 thì tử > 0 => Không khẳng định được A < 1/3
\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\)
\(\Leftrightarrow\left[\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}+1}{x\sqrt{x}-1}\right].\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\left[\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\right].\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+1-2\sqrt{x}}{x\sqrt{x}-1}.\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)^2}{x\sqrt{x}-1}.\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)2}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2}{x+\sqrt{x}+1}\)
Thêm điều kiện