Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: P = x − x + 2 ( x + 1 ) ( x − 2 ) − x x ( x − 2 ) : 1 − x 2 − x = x − x + 2 − x ( x + 1 ) ( x + 1 ) ( x − 2 ) . 2 − x 1 − x = 2 − 2 x ( x + 1 ) ( x − 1 ) = 2 ( 1 − x ) ( x + 1 ) ( x − 1 ) = − 2 x + 1
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
\(\frac{A}{\sqrt{2}}\)=\(\frac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}}\) (DK \(x\ge1\)
\(=\frac{\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|}{\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|}\)
vs \(x\ge2\) \(\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{2x-1}+1-\sqrt{2x-1}+1}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\) \(\Rightarrow A=\sqrt{2x-2}\)
vs \(1\le x< 2\) \(\frac{\sqrt{x-1}+1+1-\sqrt{x-1}}{\sqrt{2x-1}+1-1+\sqrt{2x-1}}=\frac{1}{\sqrt{2x-1}}\) \(\Rightarrow A=\frac{\sqrt{2}}{\sqrt{2x-1}}\)
\(\sqrt{2X-1}\ge1\Leftrightarrow X\ge1\)NEN SUY RA THEO CACH LAM CUA TO
THOI U AM BUSY SEE YOU AGAIN
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
\(P=\dfrac{2x\sqrt[]{x}-\sqrt[]{x}+1}{x-1}\left(x\ge0;x\ne1\right)\)
\(\Rightarrow P=\dfrac{x\sqrt[]{x}-\sqrt[]{x}+x\sqrt[]{x}+1}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)+\sqrt[]{x^3}+1}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)}{x-1}+\dfrac{\left(\sqrt[]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\)
\(\Rightarrow P=\sqrt[]{x}+\dfrac{\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)}\)
a: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
b: Khi x=9 thì P=9-3+1=7
c: P=3
=>x-căn x-2=0
=>(căn x-2)(căn x+1)=0
=>x=4
cho biểu thức A 2√x xx√x−1 −1√x−1 √x 2x √x 1 a rút gọn biểu thứcb tính giá trị của √Akhi x 4 2√3.