\(\sqrt{2a.32ab^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

Ta có : 

\(\sqrt{2a.32ab^2}\)

\(=\)\(\sqrt{64a^2b^2}\)

\(=\)\(\sqrt{8^2a^2b^2}\)

\(=\)\(\sqrt{\left(8ab\right)^2}\)

\(=\)\(\left|8ab\right|\)

Chúc bạn học tốt ~ 

11 tháng 8 2016

\(\sqrt{20}\cdot\sqrt{72}\cdot\sqrt{4,9}=\sqrt{20\cdot72\cdot4,9}=\sqrt{2\cdot10\cdot72\cdot4,9}\\ =\sqrt{144\cdot49}=\sqrt{144}\cdot\sqrt{49}=12\cdot7=84\)

Bài 2:

a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)

b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)

10 tháng 7 2018

\(A=\sqrt{1-4a+4a^2}-2a=\sqrt{\left(1-2a\right)^2}-2a=\left|1-2a\right|-2a\)

Nếu  \(a\le\frac{1}{2}\)thì:  \(A=1-2a-2a=1-4a\)

Nếu  \(a>\frac{1}{2}\)thì:  \(A=2a-1-2a=-1\)

10 tháng 7 2018

ta có:\(\sqrt{\left(1-2a\right)^2}-2a=|1-2a|-2a\)

th1:neu 1-2a <0 <=>1<2a<=>1/2<a:

l1-2al=2a-1

=>2a-1-2a=-1

th2:neu 1-2a>=0=>1>=2a=>1/2>a ta co:

l1-2al=1-2a

=>1-2a-2a=1-4a

2 tháng 8 2019

\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)

\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)

\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)

\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)

3 tháng 8 2017

A=\(\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}\) \(-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\) (dk \(a\ge0\)

 =\(\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

=\(\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

=\(\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}=a-\sqrt{a}\)

9 tháng 3 2018

quynh ơi ,tớ trong đội bồi toán lớp 5 nè . đừng nói với tớ là cậu không biết nhé ! love you

\(a,\frac{a-4\sqrt{a}+4-1}{\sqrt{a}-3}=\frac{\left(\sqrt{a}-2\right)^2-1}{\sqrt{a}-3}.\)

\(=\frac{\left(\sqrt{a}-3\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-3}\)

\(=\sqrt{a}-1\)

\(b,\frac{a+\sqrt{a^2-6a+9}}{2a-3}=\frac{a+\sqrt{\left(a-3\right)^2}}{2a-3}\)

\(=\frac{a+a-3}{2a-3}=\frac{2a-3}{2a-3}\)

\(=1\)

\(\frac{2}{2a-1}.\sqrt{5x^4\left(1-4a+4a^2\right)}\)

\(=\frac{2}{2a-1}.\sqrt{5x^4\left(2a-1\right)^2}\)

\(=\frac{2}{2a-1}.x^2.\left(2a-1\right).\sqrt{5}\)

\(=2\sqrt{5}x^2\)