Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left[\left(e-m\right)^2-\left(e+m\right)\right]\left[\left(y-1\right)^2\left(y+1\right)^2\right]}{a.16.nh}.\frac{ê}{u^{-1}}\)
\(=\frac{\left[\left(e-m\right)^2\left(e+m\right)^2\right]\left[\left(y-1\right)^2\left(y+1\right)^2\right]}{16.anh}.êu\)
\(=\frac{\left(e^2-2em+m^2-e^2-2em.m^2\right)\left(y^2-2y+1-y^2-2y-1\right)}{16anh}.êu\)
\(=-\frac{4em\left(-4y\right)}{16anh}.êu\)
\(=\frac{emy}{anh}.êu\)
\(=\frac{em.yêu}{anh}\)
=\(\frac{\left(e^2-2e.m+m^2-e^2-2e.m-m^2\right).\left(y^2-2y+1-y^2-2y-1\right)}{a.16.n.h}.\frac{e}{u^{-1}}\)
= \(\frac{-4e.m.\left(-4y\right)}{a.16.n.h}.\frac{e}{u^{-1}}\)
=\(\frac{16e.m.y}{16a.n.h}.\frac{e}{\frac{1}{4}}\)
=\(\frac{e.m.y}{a.n.h}.e.u=\frac{e.m.y.e.u}{a.n.h}\)
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)
_Minh ngụy_
\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )
\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)
_Minh ngụy_
\(a, A=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=\left(2-3-4\right)\sqrt{x-1}=-5\sqrt{x-1}\)
\(b, B=\frac{2}{x+y}.\left(x+y\right)\sqrt{\frac{3}{4}}=2\sqrt{\frac{3}{4}}=2.\frac{1}{2}.\sqrt{3}=\sqrt{3}\)
ta có: xy+yz+zx=1
=> \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)
c/m tương tự ta đc: \(1+y^2=\left(x+y\right)\left(y+z\right)\)
\(1+z^2=\left(y+z\right)\left(z+x\right)\)
thay vào A ta đc:
\(A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}+y\sqrt{\frac{\left(y+z\right)\left(z+x\right)\left(x+z\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(x+z\right)}}\)\(\Rightarrow A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(\Rightarrow A=2\left(xy+yz+zx\right)\)
\(\Rightarrow A=2\) vì xy+yz+zx=1
bài này có phải là " Biểu thức tình yêu " không ?
Biểu thức hay đấy