Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=x^2-6x+9-x^2-4x-4\)
\(=-10x+5\)
\(\left(4x^2-2xy+y^2\right)\left(2x-y\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right)\left(4x^2-2xy+y^2-4x^2-2xy-y^2\right)\)
\(=\left(2x-y\right)\cdot\left(-4xy\right)\)
a,\(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=x^2-6x+9-x^2-4x-4\)
\(=-10x+5\)
b, \(\left(4x^2-2xy+y^2\right).\left(2x-y\right)-\left(2x-y\right).\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right).\left(4x^2-2xy+y^2-4x^2-2xy-y^2\right)\)
\(=\left(2x-y\right).\left(-4xy\right)\)
a ) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(5x+x^3\right)\)
\(=\left(x+3\right)\left(x^2-3x+3^2\right)-\left(54+x^3\right)\)
\(=x^3+3^3-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b ) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2.x.y+y^2\right]-\left(2x-y\right)\left[\left(2x\right)^2+2.x.y+y^2\right]\)
\(=\left[\left(2x\right)^3+y^3\right]-\left[\left(2x\right)^3-y^3\right]\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3\)
\(=2y^3\)
a ) (x+3)(x2−3x+9)−(5x+x3)(x+3)(x2−3x+9)−(5x+x3)
=(x+3)(x2−3x+32)−(54+x3)=(x+3)(x2−3x+32)−(54+x3)
=x3+33−(54+x3)=x3+33−(54+x3)
=x3+27−54−x3=x3+27−54−x3
=−27=−27
b ) (2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)(2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)
=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]
=[(2x)3+y3]−[(2x)3−y3]=[(2x)3+y3]−[(2x)3−y3]
=(2x)3+y3−(2x)3+y3=(2x)3+y3−(2x)3+y3
=2y3
a) A = (x + 2y)(x^2 - 2xy + 4y^2) - 8(x^3 + y^3)
A = x(x^2 - 2xy + 4y^2) + 2y(x^2 - 2xy + 4y^2) - 8(x^3 + y^3)
A = x^3 - 2x^2y + 4xy^2 + 2x^2y - 4xy^2 + 8y^3 - 8x^3 - 8y^3
A = -7x^3
b) B = (2x + y)^3 - (8x^3 + y^3) - 2x^2y
B = (2x + y)[(2x)^2 + 2.2xy + y^2] - 8x^3 - y^3 - 2x^2y
B = 2x[(2x)^2 + 2.2xy + y^2] + y[(2x)^2 + 2.2xy + y^3] - 8x^3 - y^3 - 2x^2y
B = 8x^3 + 8x^2y + 2xy^2 + 4x^2y + y^3 - 8x^3 - y^3 - 2x^2y
B = 10x^2y + 6xy^2
a) Theo tớ thì để phải là:
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)=x^3+8-x^3+2=10.\)
b) \(B=\left(x+3\right)\left(x^3-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27\)
c) \(C=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)=8x^3+y^3-8x^3+y^3=2y^3\)
Cả 3 bài đều áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\) và \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(A=\left(x+y\right)\left(x^2+y^2+2xy\right)\)
\(A=\left(x+y\right)\left(x+y\right)^2\)
\(A=\left(x+y\right)^3\)
Ta có:A= x2(x+y)+y2(x+y)+2x2y+2xy2
= x3+x2y+y3+xy2+2x2y+2xy2+y3
= x3+(x2y+2x2y)+(xy2+2xy2)+y3
= x3+3x2y+3xy2+y3
= (x+y)3