Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A-1=\left(x+1\right)\left(x^2+1\right)...\left(x^{256}+1\right)\)
\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)...\left(x^{256}+1\right)\)
\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x^2-1\right)\left(x^2+1\right)...\left(x^{256}+1\right)\)
\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x^4-1\right)\left(x^4+1\right)...\left(x^{256}+1\right)\)
\(\Rightarrow\left(A-1\right)\left(x-1\right)=\left(x^{256}-1\right)\left(x^{256}+1\right)=x^{512}-1\)
\(\Rightarrow A-1=\dfrac{x^{512}-1}{x-1}\)
\(\Rightarrow A=\dfrac{x^{512}-1}{x-1}+1=\dfrac{x^{512}+x-2}{x-1}\)
\(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)
\(=\dfrac{\left(x+2\right)\left(-x^2+x+2\right)-x^2-6x-4}{x}\)
\(=\dfrac{-x^3+x^2+2x-2x^2+2x+4-x^2-6x-4}{x}\)
\(=\dfrac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
\(\left(x+2\right)\left(x-2\right)-\left(x+2\right)^2\)
\(=\left(x+2\right)\left(x-2-x-2\right)\)
\(=\left(-4\right)\left(x+2\right)\)
\(P=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
---
\(T=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Rightarrow2T=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^8-1\right)\left(3^8+1\right)=3^{16}-1\)
\(\Rightarrow T=\dfrac{3^{16}-1}{2}=21523360\)
bạn ơi bạn viết rõ bài P dc k o mình đọc chả hiểu j
\(\left(x+1\right)^4-6\left(x+1\right)^2-\left(x^2-2\right)\left(x^2+2\right)\\ =x^4+4x^3+6x^2+4x+1-6x^2-12x-6-x^4+4\\ =4x^3-8x+5\)