K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

\(M=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)

\(M=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(M=\frac{x^2-9-x^2+9}{x\left(x-3\right)}\)

\(M=\frac{0}{x\left(x-3\right)}\)

 vậy \(M=\frac{0}{x\left(x-3\right)}\)

10 tháng 12 2017

ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne3\end{cases},x\in R}\)

Ta có: \(M=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)

               \(=\frac{\left(x+3\right)\left(x-3\right)-x^2+9}{x\left(x-3\right)}\)

               \(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

Vậy \(M=0\leftrightarrow\hept{\begin{cases}x\ne0,x\ne3\\x\in R\end{cases}}\)

12 tháng 2 2018

a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))

- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.

- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)

b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013

12 tháng 2 2018

giải ra luôn đi bn mk lm r mà ra kết quả kiểu j ik

24 tháng 11 2019

Ta có:

a) M = \(\left(\frac{6x}{x^2-9}-\frac{1}{x+3}+\frac{5}{3-x}\right):\frac{4}{x^2-3x}\)

M = \(\left(\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{x-3}{\left(x+3\right)\left(x-3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\cdot\frac{x^2-3x}{4}\)

M = \(\left(\frac{6x-x+3-5x-15}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x\left(x-3\right)}{4}\)

M = \(\frac{-12.x\left(x-3\right)}{\left(x-3\right)\left(x+3\right).4}\)

M = \(-\frac{3x}{x+3}\)

b) Với x = 2 => M = \(-\frac{3.2}{3+2}=-\frac{6}{5}\)

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)

17 tháng 3 2020

\(\text{GIẢI :}\)

\(A=\left(\frac{x-2}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\right):\frac{2x-2}{x}\)

\(=\left(\frac{\left(x-2\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\right):\frac{2x-2}{x}\)

\(=\frac{x^2-3x-2x+6-x^2+9}{x\left(x-3\right)}:\frac{2x-2}{x}\)

\(=\frac{-5x+15}{x\left(x-3\right)}\cdot\frac{x}{2x-2}\)

\(=\frac{-5\left(x-3\right)}{x\left(x-3\right)}\cdot\frac{x}{2x-2}=\frac{-5}{2x-2}\).

17 tháng 10 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)

\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

b) Với \(x=6013\)( thỏa mãn ĐKXĐ )

Thay \(x=6013\)vào biểu thức ta được: 

\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)

28 tháng 12 2020

a, Ta có : \(A=\frac{1}{x+2}-\frac{2x}{4-x^2}+\frac{3}{x-2}\)

\(=\frac{1}{x+2}-\frac{2x}{\left(2-x\right)\left(x+2\right)}+\frac{3}{x-2}\)

\(=\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra : \(M=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{3x+2}\)

\(=\frac{2\left(3x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}=\frac{2}{x-2}\)

29 tháng 11 2016

\(A=\frac{\left[x\left(x^2-x+1\right)\right]-\left[\left(x+1\right)\left(3-3x\right)\right]+\left[x+4\right]}{x^3+1}\)

\(A=\frac{\left(x^3-x^2+x\right)+3\left(x^2-1\right)+\left(x+4\right)}{x^3+1}=\frac{x^3+2x^2+2x+1}{x^3+1}\)

\(A=\frac{\left(x^3+1\right)+2x\left(x+1\right)}{x^3+1}=1+\frac{2x}{x^2-x+1}\)

29 tháng 11 2016

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x\left(x^2-x+1\right)-\left(3+3x\right)\left(x+1\right)+\left(x+4\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-9x-3-3x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2-3x^2+x-9x+x+3+4}{x^3+1}\)

\(A=\frac{x^3+2x^2-4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??