K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

\(D=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2014}{2015}=\dfrac{1.2.3....2014}{2.3.4....2015}\)

\(D=\dfrac{1}{2015}\)

6 tháng 3 2017

\(D=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2015}\right)\)

\(D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2014}{2015}=\dfrac{1.2.3...2014}{2.3.4...2015}\)

\(D=\dfrac{1}{2015}\)

8 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

Vậy T = 50

8 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot\left(\dfrac{1}{4}+1\right)\cdot...\cdot\left(\dfrac{1}{98}+1\right)\cdot\left(\dfrac{1}{99}+1\right)\)

\(=\left(\dfrac{1}{2}+\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}+\dfrac{3}{3}\right)\cdot\left(\dfrac{1}{4}+\dfrac{4}{4}\right)\cdot...\cdot\left(\dfrac{1}{98}+\dfrac{98}{98}\right)\cdot\left(\dfrac{1}{99}+\dfrac{99}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{99}{98}\cdot\dfrac{100}{99}\)

\(=\dfrac{3\cdot4\cdot5\cdot...\cdot99\cdot100}{2\cdot3\cdot4\cdot...\cdot98\cdot99}\)

\(=\dfrac{100}{2}=50\).

\(A=\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\cdot...\left(1+\dfrac{1}{2499}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot...\cdot\dfrac{2500}{2499}\)

\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot...\cdot\dfrac{50\cdot50}{49\cdot51}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot50}{1\cdot2\cdot3\cdot...\cdot49}\cdot\dfrac{2\cdot3\cdot...\cdot50}{3\cdot4\cdot...\cdot51}\)

\(=\dfrac{50}{1}\cdot\dfrac{2}{51}=\dfrac{100}{51}\)

2 tháng 5 2021

B = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{19}{20}\)

\(\dfrac{1}{20}\)

14 tháng 5 2017

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)

\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)

\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)

\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)

\(A=\dfrac{-1}{100}\)

14 tháng 5 2017

Ta có

A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)

A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)

A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)

A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)

A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)

A = \(\dfrac{-1}{1}\)

A = -1

Vậy A = -1

29 tháng 6 2017

\(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)..................\left(1-\dfrac{1}{20}\right)\)

\(\Leftrightarrow B=\dfrac{1}{2}.\dfrac{2}{3}.........................\dfrac{19}{20}\)

\(\Leftrightarrow B=\dfrac{1}{20}\)

29 tháng 6 2017

Ta có : B = \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).....\left(1-\dfrac{1}{20}\right)\)

= \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{19}{20}=\dfrac{1.2.3.....19}{2.3.4.....20}=\dfrac{1}{20}\)

27 tháng 6 2017

\(T=\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).......\left(\dfrac{1}{98}+1\right).\left(\dfrac{1}{99}+1\right) \) \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}....\dfrac{99}{98}\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

27 tháng 6 2017

\(T=\left|\dfrac{1}{2}+1\right|\left|\dfrac{1}{3}+1\right|\left|\dfrac{1}{4}+1\right|.....\left|\dfrac{1}{98}+1\right|\left|\dfrac{1}{99}+1\right|\)

\(T=\left|\dfrac{3}{2}\right|.\left|\dfrac{4}{3}\right|.\left|\dfrac{5}{4}\right|......\left|\dfrac{99}{98}\right|.\left|\dfrac{100}{99}\right|\)

\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{99}{98}.\dfrac{100}{99}\)

\(T=\dfrac{3.4.5.....99.100}{2.3.4.....98.99}=\dfrac{100}{2}=50\)

25 tháng 5 2017

\(A=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}=\dfrac{100}{2}=50\)

Vậy A = 50

25 tháng 5 2017

Ta có:

A=\(^{\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).....\left(\dfrac{1}{99}\right)+1}\)

A= \(\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{1}{99}+1\)

A=\(\dfrac{1}{2}+1\)

A=\(\dfrac{3}{2}\)