\(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a,\(ĐK:a\ge1\)

\(\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)

\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)

Với \(\sqrt{a-1}\ge1\Leftrightarrow a\ge2\) thì \(\left|\sqrt{a-1}-1\right|=\sqrt{a-1}-1\)

\(\Rightarrow\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}=\sqrt{a-1}+1+\sqrt{a-1}-1=2\sqrt{a-1}\)

Với \(0\le\sqrt{a-1}< 1\)\(\Leftrightarrow1\le a< 2\) thì 

\(\left|\sqrt{a-1}-1\right|=1-\sqrt{a-1}\)

\(\Rightarrow\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}=\sqrt{a-1}+1+1-\sqrt{a-1}=2\)

Câu b tương tự:\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)

                         \(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)

                         \(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)

                          \(=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)

2 tháng 7 2018

a) \(=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1} \)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}=\sqrt{a-1}+1+\sqrt{a-1}-1=2\sqrt{a-1}\)(a>=1)

b)\(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+\sqrt{a-2}-2=2\sqrt{a-2}\)

17 tháng 8 2020

\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)

\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)

\(\Leftrightarrow C=-3\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!

10 tháng 8 2020

\(A=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(A=\sqrt{a-1}+1+1-\sqrt{a-1}\) (  DO: a < 2 - gt => \(1>\sqrt{a-1}\))

\(A=2\)

Vậy A = 2.

10 tháng 8 2020

\(B=\sqrt{\left(\sqrt{2x-1}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2x-1}-\sqrt{2}\right)^2}\)

\(B=\sqrt{2x-1}+\sqrt{2}-\left(\sqrt{2}-\sqrt{2x-1}\right)\)     

(     DO: \(x< \frac{3}{2}\)nên \(2>2x-1\)=> \(\sqrt{2}>\sqrt{2x-1}\))

\(=>B=2\sqrt{2x-1}\)

Vậy \(B=2\sqrt{2x-1}\)

11 tháng 7 2020

ý a sai sai bạn ạ

a,\(\sqrt{23-8\sqrt{7}}-\sqrt{7}=\sqrt{16-8\sqrt{7}+7}-\sqrt{7}=\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{7}=\left|4-\sqrt{7}\right|-\sqrt{7}=4-\sqrt{7}-\sqrt{7}=4\)