K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Biểu thức: \(M=\left(a+b\right)^3-\left(a-b\right)^3-b\left(6a^2-b^2\right)\)

\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-6a^2b+b^3.\)

\(=6a^2b+2b^3-6a^2b+b^3=3b^3\)

Khi b=2 thì M=3*2=24.

18 tháng 7 2020

Áp dụng HĐT thôi bạn =)

a) ( a + b )2 + ( a - b )2 - 6a2b

= a2 + 2ab + b2 + a2 - 2ab + b2 - 6a2b

= 2a2 + 2b2 - 6a2b

= 2( a2 + b2 - 3a2b ) 

b) ( a + 3 )3 - ( a - b )3 - 6a2b

=( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 ) - 6a2b

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3 - 6a2b

= 2b3

18 tháng 7 2020

bạn ghi nhầm rồi nha b chứ 3 đau

25 tháng 10 2018

Bài1: Phân tích các đa thức sau thành nhân tử

a)36-4x2+4xy-y2

\(=6^2-\left(4x^2-4xy+y^2\right)\)

\(=6^2-\left(2x-y\right)^2\)

\(=\left(6+2x-y\right)\left(6-2x+y\right)\)

b)2x4+3x2-5

\(=2x^4-2x^2+5x^2-5\)

\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)

25 tháng 10 2018

B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)

\(=\left(6-2x+y\right)\left(6+2x-y\right)\)

c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)

d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)

e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)

18 tháng 8 2020

Bạn tính sai câu b thì phải!?

18 tháng 8 2020

Câu b mình làm sai nhé!

#Xin lỗi nhiều ạ!

5 tháng 7 2017

1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)

\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(=1\)

Vậy A = 1

Bài 2: ( đặt đề bài là A )

Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)

\(\Rightarrow a+b+c=x+y+z\)

\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(=3.2c.2a.2b=24abc\)

Vậy...

Bài 3:

+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )

+) Xét \(p\ne3\) thì:

+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)

+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)

Vậy p = 3

Bài 4:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

\(\Rightarrowđpcm\)

9 tháng 7 2018

Bài 2:

a)  \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)\)

\(=a^3+b^3=VT\)  (đpcm)

b)  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc\)\(+a^2c+b^2c+c^3-abc-bc^2-ac^2\)

\(=a^3+b^3+c^3-3abc\)

9 tháng 7 2018

Bài 1:

\(N=\frac{x\left|x-2\right|}{x^2+8x-20}+12x-3\)

\(=\frac{x\left|x-2\right|}{\left(x-2\right)\left(x+10\right)}+12x-3\)

Nếu  \(x\ge2\)thì:     \(N=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3\)

                                      \(=\frac{x}{x+10}+12x+3\)  (lm tiếp nhé)

Nếu  \(x< 2\) thì:     \(N=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+10\right)}+12x-3\)

                                         \(=\frac{-x}{x+10}+12x-3\)  (lm tiếp nhé)

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

NM
9 tháng 8 2021

bài 1.

a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)

b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)

c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)

d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)

.bài 2

a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)

b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)

c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)

d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)

9 tháng 8 2021

Trả lời:

Bài 1: Rút gọn biểu thức:

a) A = ( x - y )2 + ( x + y )2

= x2 - 2xy + y2 + x2 + 2xy + y2

= 2x2 + 2y2 

b) B = ( x + y )2 - ( x - y )2 

= x2 + 2xy + y2 - ( x2 - 2xy + y2 )

= x2 + 2xy + y2 - x2 + 2xy - y2

= 4xy

c) C = ( 2a + b )2 - ( 2a - b )2 

= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )

= 4a2 + 4ab + b2 - 4a2 + 4ab - b2 

= 8ab

d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4

= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4

= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4

= - 4x2 + 20x - 13

Bài 2: Rút gọn rồi tính giá trị biểu thức:

a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )

= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 ) 

= 2x2 + 6x - 2x2 + 4x + 16

= 10x + 16

Thay x = 1/2 vào A, ta có:

\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)

b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x

= 9x2 + 24x + 16 - x2 + 16 - 10x 

= 8x2 + 14x + 32

Thay x = - 1/10 vào B, ta có:

\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)

c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )

= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )

= - 3x2 + 6x + 3x2 - 12

= 6x - 12

Thay x = 1 vào C, ta có:

\(C=6.1-12=-6\)

d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 ) 

= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x

= 4x - 5

Thay x = - 1 vào D, ta có:

\(D=4.\left(-1\right)-5=-9\)

22 tháng 10 2020

a) N = (a - 3b)2 - (a + 3b)2 - (a - 1)(b - 2)

= [a - 3b + (a + 3b)][a - 3b - (a + 3b)] - [a(b - 2) - 1(b - 2)]

= (a - 3b + a + 3b)(a - 3b - a - 3b) - (ab - 2a - b + 2)

= 2a.(-6b) - ab + 2a + b - 2

= -12ab - ab + 2a + b - 2

= -13ab + 2a + b - 2

Thay a = \(\frac{1}{2}\)và b = -3 vào biểu thức ta có :

N = -13ab + 2a + b - 2 = \(\left(-13\right)\cdot\frac{1}{2}\cdot\left(-3\right)+2\cdot\frac{1}{2}+\left(-3\right)-2=\frac{31}{2}\)

b) P = (2x - 3)(2x + 3) - (2x + 1)2

 = (2x)2 - 32 - [(2x)2 + 2.2x.1 + 12 ]

= 4x2 - 9 - (4x2 + 4x + 1)

= 4x2 - 9 - 4x2 + 4x + 1

= (4x2 - 4x2) + (-9  +1) + 4x

= -8 + 4x

Thay x = -2005 vào biểu thức ta có :

P = -8 + 4x = -8 + 4.(-2005) = -8028

c) Q = (y - 3)(y + 3)(y2 + 9) - (y2 + 2)(y2 - 2)

        = (y2 - 9)(y2 + 9) - (y2 + 2)(y2 - 2)

        = (y2 - 81) - (y2 - 4)

        = y2 - 81 - y2 + 4 = -77