K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

\(\sqrt{1}+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}\) với a > 0

\(=1+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=\left(1+\dfrac{1}{a^2}+\dfrac{2}{a}\right)-\dfrac{2}{a}+\dfrac{1}{\left(a+1\right)^2}\)

\(=\left(1+\dfrac{1}{a}\right)^2-2\left[\dfrac{\left(a+1\right)}{a}\right].\left[\dfrac{1}{\left(a+1\right)}\right]+\dfrac{1}{\left(a+1\right)^2}\)

\(=\left(1+\dfrac{1}{a}\right)^2-2\left(1+\dfrac{1}{a}\right).\dfrac{1}{\left(a+1\right)}+\dfrac{1}{\left(a+1\right)^2}\)

\(=\left[1+\dfrac{1}{a}-\dfrac{1}{\left(a+1\right)}\right]^2\)

16 tháng 7 2016

a) \(\sqrt{0,49\cdot a^2}=\sqrt{0,7^2\cdot a^2}=\sqrt{\left(0,7\cdot\left|a\right|\right)^2}=0,7\left|a\right|\) (với a < 0)

b) \(\sqrt{25\left(7-a\right)^2}=\sqrt{\left[5\left(7-a\right)\right]^2}=5\left|7-a\right|\) (với a >/ 7)

c) \(\sqrt{a^4\left(a-2\right)^2}=a^2\left(a-2\right)=a^3-2a\) (với a >0 )

Tớ mới học nên cx ko chắc chắn lắm nhé.

30 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

30 tháng 12 2016

\(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)=2+a+b+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}\)

\(\ge2+2+a+b+\frac{4}{a+b}\)

\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\)

 \(\ge4+2\sqrt{2}+\frac{2}{\sqrt{2\left(a^2+b^2\right)}}\)

\(=4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

26 tháng 7 2021

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2003}{x}\)ĐK : \(x\ne0;\pm1\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{2003}{x}\)

\(=\frac{x^2-1}{\left(x-1\right)\left(x+1\right)}.\frac{2003}{x}=\frac{2003}{x}\)

26 tháng 7 2016

chuyen 5va9/10 thanh so thap phan

11 tháng 12 2017

1) Đề sai. Như thế này mới đúng.

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{b+a}{ba}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

Vậy ta có đpcm

2) Áp dụng bài 1), ta có:

\(P=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

\(P\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{1}{\dfrac{2\left(a+b\right)^2}{4}}=4+2=6\)

MinP là 6 khi \(a=b=\dfrac{1}{2}\)