K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{a^{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}{a^{\left(\sqrt{5}-1\right)+\left(3-\sqrt{5}\right)}}=\dfrac{a}{a^{\sqrt{5}-1+3-\sqrt{5}}}=\dfrac{a}{a^2}=\dfrac{1}{a}\)

 

NV
11 tháng 1 2024

\(D=a^{\dfrac{7}{2}}.a^{\dfrac{1}{3}}.a^{\dfrac{7}{4}}=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}=\sqrt[12]{a^{67}}\)

\(D=a^{\sqrt{2}-1}.a^{2\sqrt{2}}.a^{3-3\sqrt{2}}=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{3}}=a^2\)

\(D=\left(\sqrt{a}\right)^7\cdot\left(\sqrt[3]{a}\right)\left(\sqrt[4]{a}\right)^7\)

\(=a^{\dfrac{1}{2}\cdot7}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}\cdot7}\)

\(=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}\)

b: \(D=a^{\sqrt{2}-1}\cdot\left(a^2\right)^{\sqrt{2}}\cdot\left(a^3\right)^{1-\sqrt{2}}\)

\(=a^{\sqrt{2}-1}\cdot a^{2\sqrt{2}}\cdot a^{3-3\sqrt{2}}\)

\(=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{2}}=a^2\)

NV
11 tháng 1 2024

\(E=a^{12-4}.b^{3-7}=\dfrac{a^8}{b^4}\)

\(E=a^{4-6}.b^{3.4}=\dfrac{b^{12}}{a^2}\)

\(F=\dfrac{a^{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}{a^{\left(\sqrt{5}-3\right)+\left(4-\sqrt{5}\right)}}=\dfrac{a^2}{a^1}=a\)

loading...  loading...  loading...  loading...  

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5} = {\left( {\frac{1}{3}} \right)^{2.\frac{1}{4}}}.{\left( {{3^{\frac{1}{2}}}} \right)^5} = {\left( {{3^{ - 1}}} \right)^{\frac{1}{2}}}{.3^{\frac{1}{2}.5}} = {3^{ - \frac{1}{2}}}{.3^{\frac{5}{2}}} = {3^{ - \frac{1}{2} + \frac{5}{2}}} = {3^2} = 9\)

Chọn D.

a: \(\sqrt[4]{\left(-\dfrac{4}{5}\right)^4}=\left|-\dfrac{4}{5}\right|=\dfrac{4}{5}\)

b: \(\dfrac{\sqrt{4}}{\sqrt{5}}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

c: \(\left(\sqrt[3]{9}\right)^2=\left(9^{\dfrac{1}{3}}\right)^2=9^{\dfrac{2}{3}}\)

d: \(\sqrt[5]{\sqrt{a}}=\sqrt[5]{a^{\dfrac{1}{2}}}=a^{\dfrac{1}{2}\cdot\dfrac{1}{5}}=a^{\dfrac{1}{10}}\)

e: \(\sqrt[3]{2^6}=\sqrt[3]{\left(2^2\right)^3}=2^2=4\)

13 tháng 5 2022

\(a,\) ta có : 

\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)

\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)

__________________________________________________________

\(b,\) với \(x>0\) và \(x\ne1\) . ta có :

\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)

vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)

để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

vậy để \(B=2\) thì \(x=4\)

13 tháng 5 2022

c.ơn bn

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,a^{\dfrac{3}{5}}\cdot a^{\dfrac{1}{2}}:a^{-\dfrac{2}{5}}=a^{\dfrac{3}{5}+\dfrac{1}{2}-\left(-\dfrac{2}{5}\right)}=a^{\dfrac{3}{2}}\\ b,\sqrt{a^{\dfrac{1}{2}}\sqrt{a^{\dfrac{1}{2}}\sqrt{a}}}\\ =\sqrt{a^{\dfrac{1}{2}}\sqrt{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{2}}}}\\ =\sqrt{a^{\dfrac{1}{2}}\sqrt{a}}\\ =\sqrt{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{2}}}\\ =\sqrt{a}\)

a: \(=3\cdot3^{\dfrac{1}{2}}\cdot3^{\dfrac{1}{.4}}\cdot3^{\dfrac{1}{8}}=3^{1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}}=3^{\dfrac{15}{16}}\)

b: \(=\sqrt{a\cdot\sqrt{a\cdot a^{\dfrac{1}{2}}}}\)

\(=\sqrt{a\cdot\sqrt{a^{\dfrac{3}{2}}}}=\sqrt{a\cdot a^{\dfrac{3}{4}}}=\sqrt{a^{\dfrac{7}{4}}}=a^{\dfrac{7}{4}\cdot\dfrac{1.}{2}}=a^{\dfrac{7}{8}}\)

c: \(=\dfrac{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}}}{\left(a^{\dfrac{1}{5}}\right)^3\cdot a^{\dfrac{2}{5}}}=\dfrac{a^{\dfrac{13}{12}}}{a}=a^{\dfrac{1}{12}}\)

\(=\dfrac{xy\left(x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}\right)}{x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}}=xy\)

23 tháng 8 2023

\(A=\dfrac{x^{\dfrac{3}{2}}y+xy^{\dfrac{3}{2}}}{\sqrt{x}+\sqrt{y}}=\left(x+y\right).\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\).