Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
Ta có
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(=2^{64}-1\)
3.(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=(28-1)(28+1)(216+1)(232+1)
=(216-1)(216+1)(232+1)
=(232-1)(232+1)
=264-1
3(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)(264+1)
=(28-1)(28+1)(216+1)(232+1)(264+1)
=(216-1)(216+1)(232+1)(264+1)
=(232-1)(232+1)(264+1)
=(264-1)(264+1)
=(2128-1)
Nếu thấy đúng thì thích cho mình nha
\(8.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^4-1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)-3^{32}=3^{32}-1-3^{32}=-1\)
Đặt A
Rút gọn: (3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
A=(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=2(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3-1)(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^2-1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^4-1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^8-1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^16-1)(3^16 + 1)(3^32 + 1)
2A=(3^32 - 1)(3^32 + 1)
2A=3^64-1
=>A=(3^64-1) /2
Lời giải :
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\cdot\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\cdot\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\cdot\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\cdot\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\cdot\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\cdot\left(3^{64}-1\right)\)
\(=\frac{3^{64}-1}{2}\)
Ta có: 3 + 1 = (3^2 - 1)/(3 - 1)
3^2 + 1 = (3^4 - 1)/(3^2 - 1)
3^4 + 1 = (3^8 - 1)/(3^4 - 1)
3^8 + 1 = (3^16 - 1)/(3^8 - 1)
3^16 + 1 = (3^32 - 1)/(3^16 - 1)
3^32 + 1 = (3^64 - 1)/(3^32 - 1)
(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
=(3^2 - 1)/(3 - 1).(3^4 - 1)/(3^2 - 1).(3^8 - 1)/(3^4 - 1).(3^32 - 1)/(3^16 - 1).(3^64 - 1)/(3^32 - 1)
=(3^64 - 1)/(3 - 1)
=(3^64 - 1)/2
Đặt biểu thức đó là A
(3-1) A= (3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) (3^32+1)
2 A= (3^2-1)(3^2+1)(3^4+1)..............................................
2A = (3^4-1)(3^4+1)(3^8+1) ............................
2A= (3^8-1)(3^8+1)(3^16+1) .............
2A = (3^16-10(3^16+1)(3^32+1)
2A = (3^32-1)(3^32+1)
2A= 3^64-1
A= (3^64-1) / 2
3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
=(4 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
=(22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
=(24 - 1)(24 + 1)(28 + 1)(216 + 1)
=(28 - 1)(28 + 1)(216 + 1)
=(216 - 1)(216 + 1)
=(232 - 1)
Đặt A=3(22 +1)(24+1)(28+1)(216+1)
=(4-1)(22+1)(24+1)(28+1)(216+1)
=[(22-1)(22+1)](24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)
=232-1
3(22 +1)(24+1)(28+1)(216+1) = (22 -1)(22 +1)(24+1)(28+1)(216+1) = (24-1)(24+1)(28+1)(216+1) = (28-1)(28+1)(216+1)
= (216-1)(216+1) = 232-1
c. (x-1)2-2(x2-1)+(x+1)2
=(x-1)2-2(x-1)(x+1)+(x+1)2
=(x-1-x-1)2= (-2)2=4
d. G=(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)
2G=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)
2G=332-1 => G=(332-1)/2
\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(=2^{64}-1\)
A = 3( 22 + 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 22 - 1 )( 22 + 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 24 - 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 28 - 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 216 - 1 )( 216 + 1 )( 232 + 1 )
= ( 232 - 1 )( 232 + 1 )
= 264 - 1