K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=4x^2+4x-5x-5-\left(3x^2+x+9x+3\right)\)

\(=4x^2-x-5-3x^2-10x-3=x^2-11x-8\)

6 tháng 7 2016

a) \(\left(x-3\right)\left(3x+2\right)-3x\left(x-5\right)+3\)

 \(=x.\left(3x+2\right)-3.\left(3x+2\right)-3x\left(x-5\right)+3\)

\(=x.3x+x.2-3.3x-3.2-3x.x+3x.5+3\)

\(=3x^2+2x-9x-6-3x^2+15x+3\)

\(=8x-3\)

 

6 tháng 7 2016

b ) 

\(2x\left(x-3\right)-\left(x-5\right)\left(2x-1\right)\)

\(2x.x-2x.3-x.\left(2x-1\right)-5.\left(2x-1\right)\)

\(2x.x-2x.3-x.2x+x.1-5.2x+5.x\)

\(2x^3-6x-2x^2+x-10x+5x\)

\(2x^3-15x-2x^2\)

5 tháng 1 2021

Đề là biểu thức hay phân thức ( nếu là biểu thức thi :)

a, \(x^2-10x+25=\left(x-5\right)^2\)

 \(x^2-3x-10=x^2+2x-5x-10=\left(x-5\right)\left(x+2\right)\)

\(4x+8=4\left(x+2\right)\)

5 tháng 1 2021

Nếu là phân thức thì =) p/s : viết đề hẳn hoi đi :v 

a, \(\frac{x^2-10x+25}{x^2-3x-10}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+2\right)}=\frac{x-5}{x+2}\)

b, chả hiểu 

a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)

\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)

\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)

\(=-18x^3-46x^2-8x+16\)

25 tháng 8 2016

2x(3x3-x)-4x2(x-x2+1)+(x-3x2)x

=6x4-2x2+4x4-4x3-4x2+x2-3x3

=(6x4+4x4)+(-4x3-3x3)+(-4x2-x2)

=10x4-7x3-5x2

 

26 tháng 8 2016

\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\\ =6x^4-2x^2+4x^4-4x^3-4x^2+x^2-3x^3\\ =\left(6x^4+4x^4\right)+\left(-4x^3\right)-3x^3+\left(-4x^2-x^2\right)\)

\(=10x^4-7x^3-5x^2\)

a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)

\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)

\(=-17x+18\)

26 tháng 7 2018

uầy ,bn cứ nhân vào là đc

26 tháng 7 2018

Thôi giúp luôn  =.=

\(\left(x+3\right)^2+\left(2x+1\right)\left(3x-5\right)-2x\left(3-x\right)+4x+25\)

\(=x^2+6x+9+6x^2-10x+3x-5-6x+2x^2+4x+25\)

\(=9x^2-3x+29\)

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)