Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
a/ta gọi biểu thức trên là A.
ta có: A=1+2+22+...+2100
2A= 2x(1+2+22+...+2100)
2A= 2x1+2x2+22x2+...+2100x2
2A= 2+22+23+....+2101
2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)
A= 2101-1
b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)
a)2A=4+4^2+4^3+...+4^101
2A-A=4^101-1
A=4^101-1
khong bit phai hoi muon gioi phai hoc
\(B=1+\frac{1}{2}+\frac{1}{2}^2+\frac{1}{2}^3+...+\frac{1}{2}^{100}\)
\(B=1+\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{2^3}+...+\frac{1^{100}}{2^{100}}\)
\(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2B-B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{100}}\)
\(B=2-\frac{1}{2^{100}}=\frac{2^{99}}{2^{100}}-\frac{1}{2^{100}}=\frac{2^{99}-1}{2^{100}}\)
1 + 3 + 32 + 33 + 34 + ........ + 3100
\(3S=3+3^2+3^3+3^4+3^5+.......+3^{101}\)
\(3S-S+\left(3+3^2+3^3+3^4+3^5+.......+3^{101}\right)-\left(1+3+3^2+3^3+3^4+........+3^{100}\right)\)
\(2S=3+3^2+3^3+3^4+3^5+.......+3^{101}-1-3-3^2-3^3-3^4-......-3^{100}\)
\(2S=3^{101}-1\)
\(S=\frac{3^{101}-1}{2}\)
`A=1+4+4^2+4^3+....+4^99+4^100`
`=>4A=4+4^2+4^3+4^4+...+4^100+4^101`
`=>4A-A=4^101-1`
`=>3A=4^101-1`
`=>A=(4^101-1)/3`
Ta có: \(A=1+4+4^2+...+4^{99}+4^{100}\)
\(\Leftrightarrow4\cdot A=4+4^2+4^3+...+4^{100}+4^{101}\)
\(\Leftrightarrow4\cdot A-A=4^{101}-1\)
hay \(A=\dfrac{4^{101}-1}{3}\)