Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| x12 - x22| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn
Đặt \(x^2=t\left(t>0\right)\)
\(pt\Leftrightarrow t^2-2\left(m+1\right)t+4m=0\left(1\right)\)
Để pt có 4 nghiệm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\hept{\begin{cases}\Delta'=m^2+2m+1-4m>0\\x_1+x_2=2\left(m+1\right)>0\\x_1.x_2=4m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2>0\\m>-1\\m>0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m\ne1\\m>0\end{cases}}\)
giả sử \(\hept{\begin{cases}x_1^2=x_2^2=t_1\\x_3^2=x_4^2=t_2\end{cases}\Rightarrow2x_1^2}+2x_3^2=12\)
\(\Leftrightarrow2\left(t_1+t_2\right)=12\)
\(\Leftrightarrow2.2\left(m+1\right)=12\Leftrightarrow m+1=3\Leftrightarrow m=2\) (TM)
Vậy m=2 thì pt có 4 nghiệm pb
a,Phần này dễ, bạn tự làm nha!! :))
b, Để phương trình có 2 nghiệm khác 0 thì: \(\Delta^'\ge0\)
Hay: \(\left(-1\right)^2-\left(-3m^2\right)\ge0\)
\(\Leftrightarrow1+3m^2\ge0\)
Mà: \(1+3m^2>0\forall m\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-3m^2\end{cases}}\)
Ta có: \(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)
\(\Leftrightarrow\frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}=\frac{8}{3}\) (x1>x2)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{2\sqrt{2^2-4\left(-3m^2\right)}}{-3m^2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{2\sqrt{4+12m^2}}{-3m^2}=\frac{8}{3}\)
\(\Leftrightarrow6\sqrt{4+12m^2}=-24m^2\)
Mà: \(6\sqrt{4+12m^2}\ge0\forall m\)
và \(-24m^2\le0\forall m\)
=> Không có giá trị của m thỏa mãn
=.= hk tốt!!
( Có gì sai sót mong bạn bỏ qua ạ ><)
để phương trình có 2 nghiệm phân biệt thì delta' > 0 \(\Leftrightarrow\left(m-2\right)^2+m^2>0\)ta được 1 phương trình luôn lớn hơn 0 vơi mọi m
áp dụng hệ thức viet vào phương trình ta được \(\hept{\begin{cases}x1+x2=-2\left(m-2\right)\\x1.x2=-m^2\end{cases}}\)
ta có |x1|-|x2|=6 \(\Leftrightarrow\)x12+x22-2|x1.x2|-6=0 \(\Leftrightarrow\)(x1+x2)2-2x1x2-2|x1x2|-6=0 \(\Leftrightarrow\left(-2\left(m-2\right)\right)^2+2m^2-2\left|-m^2\right|-6=0\)
giải phương trình có chứa dâu giá trị tuyệt đối rồi đối chiếu với điều kiện để chọn và tìm m phù hợp
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{x-1+2\sqrt{x}+1}{x+\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)