\(\frac{2^3-1}{2^3+1}.\frac{3^3-1}{3^3+1}.....\frac{2019^3-1}{2019^3+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

24 tháng 2 2020

d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)

\(\Leftrightarrow x=-10\)

Vậy x = -10 là nghiệm của phương trình.

24 tháng 2 2020

Hỏi đáp ToánHỏi đáp Toán

10 tháng 8 2019

\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)\(=\sqrt{6+2.1,4.\sqrt{3-\sqrt{1,4+2.1,7+\sqrt{18-8.1,4\text{​​}}}}}-1,7\)

\(=\sqrt{6+2,8\sqrt{3-\sqrt{1,4+3,4+\sqrt{18-11,2}}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+\sqrt{6,8}}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+2,6}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-\sqrt{7,4}}}-1,7\)

\(=\sqrt{8,8\sqrt{3-2,7}}-1,7\)

\(=\sqrt{88\sqrt{0,3}}-1,7\)

\(=\sqrt{88.0,54}-1,7\)

\(=\sqrt{47,52}-1,7\)

\(=6,9-1,7\)

\(=5,2\)

2,Mệt với câu 1 rồi nên câu 2 và câu 3 chịu

10 tháng 8 2019

hình như sai rồi bạn ơi, lúc học thì thầy mình giải ra kết quả =1 và ko tính căn ra như thế

22 tháng 8 2019

a)

\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)

b)

B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)

22 tháng 8 2019

a. \(A=\frac{2020^3+1}{2020^2-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020^2-2020+1}=2020+1=2021\)

b. \(B=\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}=2020-1=2019\)

NV
5 tháng 10 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=3\\b=3\\c=3\end{matrix}\right.\)

\(\Rightarrow\left(a-3\right)^{2017}\left(b-3\right)^{2018}\left(c-3\right)^{2019}=0\)

27 tháng 9 2017

a) \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)

\(=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{4x^2-3x+17+2x^2-x-2x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=-\frac{12}{x^2+x+1}\)

b) \(\frac{1}{x^2-x+1}-\frac{x^2+2}{x^3+1}+1=\frac{x+1-x^2-2+x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x-x^2+x^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)

c) \(N=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac+abc^2+abc}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac\left(1+bc+b\right)}\)

\(N=\frac{1+b}{b+1+bc}+\frac{bc}{1+bc+b}\)

\(N=\frac{1+b+bc}{b+1+bc}\)

\(N=1.\)