K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Ta có:

\(\left(a+b\right)^3+\left(a-b\right)^3-6a^2b\)

\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-6a^2b\)

\(=2a^3+6ab^2-6a^2b\)

26 tháng 7 2018

Giúp mình với mình cần gấp

31 tháng 7 2018

Giúp mình câu a thôi mình giải đc câu b rồi

17 tháng 7 2019

\(a,\left(a^3-b^3\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

\(b,\left(x^2+1\right)^2-4x^2\)

\(=x^4+2x^2+1-4x^2\)

\(=x^4-2x^2+1\)

\(\left(x^2-1\right)^2\)

\(c\left(y^3+8\right)+\left(y^2-4\right)\)

\(=\left(y+2\right)\left(y^2-8y+4\right)+\left(y-2\right)\left(y+2\right)\)

\(=\left(y+2\right)\left(y^2-8y+4+y-2\right)\)

\(=\left(y+2\right)\left(y^2-7y+2\right)\)

17 tháng 7 2019

a) ( a3 - b3) + ( a - b)2

= (a-b) (a2 + ab + b) + (a-b)2

= (a-b) (a2 + ab + b2 +a -b ) 

hok tốt

17 tháng 8 2017

\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x+28=28\)

\(\Leftrightarrow3x^2+26x=0\)\(\Leftrightarrow x\left(3x+26\right)=0\)

Suy ra x=0 hoặc x=-26/3

18 tháng 9 2020

cho mk hỏi ngu tí là 6x^2 ở đâu thế ạ

7 tháng 6 2016

a)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=2ab+2ab=4ab\)

b)\(\left(a+b\right)^3-\left(a-b\right)^3-2b^3=\left(a^3+b^3+3ab\left(a+b\right)\right)-\left(a^3-b^3-3ab\left(a-b\right)\right)-2b^3\)

\(2b^3-2b^3+3ab^2+3ab^2=6ab^2\)

21 tháng 8 2016

a) \(\left(x+a\right).\left(x+b\right)=x.x+x.b+a.x+a.b=x^2+bx+ax+ab=x^2+\left(a+b\right)x+ab\)

Vậy (x + a) . (x + b) = x2 + (a + b) . x + ab.

b)\(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)(Vế đầu mình áp dụng luôn ở câu a)

\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)

\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)

\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right)x+abc\)

Vậy (x + a) . (x + b) . (x + c) = x3 + (a + b + c) . x2 + (ab + bc + ca) . x + abc.

17 tháng 8 2017

(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49

<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49

<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49

<=>24x+25=49

<=>24x=24

<=>x=1 x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42

<=>x(x2-25)-(x3+8)=42

<=>x3-25x-x3-8=42

<=>-25x-8=42

<=>-25x=50

<=>x=-2

17 tháng 8 2017

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

<=>\(\left(x^3-6x^2+12x-8\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)

<=>\(x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

<=>24x+25=49 <=> 24x=24 <=> x=1

4 tháng 7 2017

a) Ta có : x(x + 4)(x - 4) - (x2 + 1)(x2 - 1)

= x(x2 - 16) - (x4 - 1)

= x3 - 16x - x4 + 1

= x(x2 - 16 - x3) + 1

4 tháng 7 2017

\(a,x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x\left(x^2-16\right)-x^4+1=x^3-16x=x^4+1\)

15 tháng 1 2017

Thao bài ra , ta có 

\(a^2+b^2=1,c^2+d^2=1\)

và ac + bd = 0 

Theo bất đẳng thức Bunhiacopxki , Ta có : 

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2\)

mà ac + bd = 0 

\(\Rightarrow\left(ac+bd\right)=0\)

\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2=0\)

\(\Rightarrow ac=bd\)

\(\Rightarrow ab=cd\Rightarrow\left(ab+cd\right)=0\Rightarrow\left(ab+cd\right)^2=0\)

Vậy \(ab+cd=0\)

Chúc bạn học tốt =)) 

15 tháng 1 2017

BĐT j ngộ thế. "Bất" đẳng thức sao lại xài dấu = nhỉ !?