Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4\left(a-3\right)^2}\)
\(=\sqrt{2^2\left(a-3\right)^2}\)
\(=2\left(a-3\right)\)
\(=2a-6\)
\(\sqrt{4\left(a-3\right)^2}=\sqrt{\left[2\left(a-3\right)\right]^2}=2\left(a-3\right)\)3)
\(\sqrt{4\left(a-3\right)^2}\)
\(=\sqrt{4\left(a^2-6a+9\right)}\)
\(=\sqrt{4a^2-24a+36}\)
\(=\sqrt{\left(2a-6\right)^2}\)
\(=\left|2a-6\right|\)
\(=2a-6\)
Rút gọn bt:
Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư
Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Tìm ĐKXĐ . Rút gọn P
B, Tìm x nguyên để P có gt nguyên
c, Tìm GTNN của P với a >1
Câu 3: Giair các pt
a, \(\sqrt{\left(2x-1\right)^2}=4\)
b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
\(a,\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
\(=\left(5\sqrt{2}+4\sqrt{3}-6\sqrt{2}\right)2\sqrt{3}\)
\(=\left(4\sqrt{3}-\sqrt{2}\right)2\sqrt{3}\)
\(=24-2\sqrt{6}\)
ĐKXĐ: ...
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}-1}\)
\(x=\frac{2}{2-\sqrt{3}}=\frac{4}{4-2\sqrt{3}}=\left(\frac{2}{\sqrt{3}-1}\right)^2\)
\(\Rightarrow P=\frac{\frac{2}{2-\sqrt{3}}}{\frac{2}{\sqrt{3}-1}-1}=\frac{\frac{2}{2-\sqrt{3}}}{\frac{3-\sqrt{3}}{\sqrt{3}-1}}=\frac{2}{2\sqrt{3}-3}\)
\(\sqrt{P}\) xác định khi \(x>1\)
Khi đó: \(\sqrt{P}=\sqrt{\frac{x}{\sqrt{x}-1}}=\sqrt{\frac{x}{\sqrt{x}-1}-4+4}=\sqrt{\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge2\)
\(\sqrt{P}_{min}=2\) khi \(x=4\)
Câu 3:
a: =>|2x-1|=4
=>2x-1=4 hoặc 2x-1=-4
=>x=-3/2 hoặc x=5/2
b: \(\Leftrightarrow2\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}=5\)
=>3căn x+1=5
=>x+1=25/9
=>x=16/9
a) \(\sqrt{\left(3-6a\right)^2}=6a-3\)
( vì \(a\ge\frac{1}{2}\)\(\Rightarrow3-6a< 0\))