Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i)
$I=x^4+4x^3-x^2-14x+6$
$=(x^4+4x^4+4x^2)-5x^2-14x+6$
$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$
$=(x^2+2x-3)^2+(x^2-2x+1)-4$
$=(x-1)^2(x+3)^2+(x-1)^2-4$
$=(x-1)^2[(x+3)^2+1]-4\geq -4$
Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$
k)
$K=x^4+2x^3-10x^2-16x+45$
$=(x^4+2x^3+x^2)-11x^2-16x+45$
$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$
$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$
$=(x^2+x-6)^2+(x-2)^2+5$
$=[(x-2)(x+3)]^2+(x-2)^2+5$
$=(x-2)^2[(x+3)^2+1]+5\geq 5$
Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$
g)
$G=x^4+4x^3+10x^2+12x+11$
$=(x^4+4x^3+4x^2)+6x^2+12x+11$
$=(x^2+2x)^2+6(x^2+2x)+11$
Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$
$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$
Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$
h)
$H=x^4-6x^3+x^2+24x+18$
$=(x^4-6x^3+9x^2)-8x^2+24x+18$
$=(x^2-3x)^2-8(x^2-3x)+18$
$=(x^2-3x)^2-8(x^2-3x)+16+2$
$=(x^2-3x-4)^2+2\geq 2$
Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$
Bài 1:
a: \(6x^2-11x+3\)
\(=6x^2-9x-2x+3\)
\(=3x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-3\right)\left(3x-1\right)\)
b: \(2x^2+3x-27\)
\(=2x^2+9x-6x-27\)
\(=x\left(2x+9\right)-3\left(2x+9\right)\)
\(=\left(2x+9\right)\left(x-3\right)\)
c: \(x^2-10x+24\)
\(=x^2-4x-6x+24\)
\(=x\left(x-4\right)-6\left(x-4\right)\)
\(=\left(x-4\right)\left(x-6\right)\)
d: \(49x^2+28x-5\)
\(=49x^2+28x+4-9\)
\(=\left(7x+2\right)^2-9\)
\(=\left(7x-1\right)\left(7x+5\right)\)
e: \(2x^2-5xy-3y^2\)
\(=2x^2-6xy+xy-3y^2\)
\(=2x\left(x-3y\right)+y\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x+y\right)\)
a/ \(=x^4+2x^3+2x^2+\left(x^3+2x^2+2x\right)-\left(5x^2+10x+10\right)\)
\(=x^2\left(x^2+2x+2\right)+x\left(x^2+2x+2\right)-5\left(x^2+2x+2\right)\)
\(=\left(x^2+x-5\right)\left(x^2+2x+2\right)\)
b/ \(=3x^4+x^3-x^2+\left(9x^3+3x^2-3x\right)-\left(18x^2+6x-6\right)\)
\(=x^2\left(3x^2+x-1\right)+3x\left(3x^2+x-1\right)-6\left(3x^2+x-1\right)\)
\(=\left(x^2+3x-6\right)\left(3x^2+x-1\right)\)
c/ Bạn xem lại đề, câu này ko phân tích được
\(2x^4+3x^3-9x^2-3x+2\)
\(=2x^4+5x^3-2x^2-2x^3-5x^2+2x-2x^2-5x+2\)
\(=x^2\left(2x^2+5x-2\right)-x\left(2x^2+5x-2\right)-\left(2x^2+5x-2\right)\)
\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
b/
\(x^4-3x^3-6x^2+3x+1\)
\(=x^4-4x^3-x^2+x^3-4x^2-x-x^2+4x+1\)
\(=x^2\left(x^2-4x-1\right)+x\left(x^2-4x-1\right)-\left(x^2-4x-1\right)\)
\(=\left(x^2+x-1\right)\left(x^2-4x-1\right)\)
c/
\(x^4-6x^3+12x^2-14x+3\)
\(=x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3\)
\(=x^2\left(x^2-4x+1\right)-2x\left(x^2-4x+1\right)+3\left(x^2-4x+1\right)\)
\(=\left(x^2-2x+3\right)\left(x^2-4x+1\right)\)
e/
Đề sai, sao có 2 hạng tử chứa \(x^4\) thế kia?