Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5-2^{12}\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5\left(1-3\right)\)
\(=2^{12}\cdot-2\cdot3^5\)
\(=-2^{13}\cdot3^5\)
b)
\(=2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^6\)
\(=2^{12}\cdot3^6+2^{12}\cdot3^6\)
\(=2\cdot2^{12}\cdot3^6\)
\(=2^{13}\cdot3^6\)
\(4^5\cdot9^4-2.6^9=\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9=2^{10}.3^8-2.2^9.3^9=2^{10}.3^8-2^{10}.3^9=3^8-3^9=-13122\)
\(2^{10}.3^8+6^8.20=2^{10}.3^8+\left(2.3\right)^8.2^2.5=2^{10}.3^8+2^8.3^8.2^2.5=2^{10}.3^8+2^{10}.3^8.5=2^{10}.3^8.\left(1+5\right)=2^{10}.3^8.6=2^{10}.3^8.2.3=2^{11}.3^9\)
\(2^{12}.3^5-4^6.9^2=663552\)
\(\left(2^2.3\right)^6+8^4.3^5=3981312\)
\(\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^4}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^4}=\frac{2^{12}\cdot\left(3^5-3^4\right)}{2^{12}\cdot\left(3^6+3^4\right)}=\frac{2^{12}\cdot3}{2^{12}\cdot3^4\cdot2\cdot5}=\frac{1}{3^3\cdot2\cdot5}=\frac{1}{270}\)