Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạt nhân Natri là \(N_0 = nN_Á = \frac{m}{A}N_A\)
Độ phóng xạ ban đầu \(H_0 = \lambda N_0 = \frac{\ln 2}{T}\frac{m}{A}N_A= 6,73.10^{16}.(Bq)\)
Chú ý là trong khi tính độ phóng xạ theo đơn vị "Bq" thì chu kì phải đổi sang đơn vị "giây" .
Số hạt nhân Pôlôni lúc đầu là \(N_ 0 = nN_A= \frac{m_0}{A}N_A= \frac{42.10^{-3}.6,02.10^{23}}{210}= 1,204.10^{20}\)
Độ phóng xạ ban đầu là \(H_0 = \lambda N_0 = \frac{\ln 2}{T}N_0 = \frac{\ln 2}{140.24.3600}1,204.10^{20}= 6,9.10^{12}.(Bq)\)
Chú ý: Khi tính độ phóng xạ theo đơn vị Bq thì thời gian chu kì phải chuyển sang "giây"
Số hạt còn lại: \(N=N_0.2^{-\dfrac{80}{20}}=\dfrac{N_0}{16}\)
Số hạt bị phân rã: \(N'=N_0-N=\dfrac{15}{16}N_0=93,75%\)
Tỉ số giữa độ phóng xạ của tượng gỗ (sau thời gian t) so với độ phóng xạ của gỗ lúc mới chặt
\(\frac{H}{H_0}= 0,8= 2^{-\frac{t}{T}}\)
=> \(t = 0,32 T = 1802,8.( năm)\)
Như vậy tượng gỗ có gần 1803 năm tuổi.
\(X \rightarrow _{-1}^{\ \ 0}e+Y\)
Từ phương trình phóng xạ => Cứ 1 hạt nhân \(X\) bị phóng xạ thì tạo thành 1 hạt nhân \(\beta^-\)
Số hạt nhân \(X\) bị phóng xạ là \(\Delta N = 4,2.10^{13}\) hạt. (1)
Số hạt nhân ban đầu \(X\) (trong 1 gam) là: \(N_0 = \frac{m_0}{A}.N_A= \frac{1}{58,933}.6,023.10^{23} \approx 1,022.10^{22}\)hạt. (2)
Từ (1) và (2) => \(\Delta N = N_0(1-2^{-\frac{t}{T}})\)
=> \(2 ^{-t/T}=1- \frac{\Delta N}{N_0} \)
=> \(\frac{-t}{T} = \ln_2(1- \frac{4,2.10^{13}}{1,022.10^{22}}) =- 5,93.10^{-9}\)
=> \(T \approx 1,68.10^{8}s.\) (\(t = 1s\))
Chọn đáp án.B.1,68.108s.
Ho = 14 hạt/phút
\(_{92}^{238}U \rightarrow _2^4He + _{90}^{234}\text{Th}\)
Sau 9.109 năm thì số gam Urani bị phân rã là
\(\Delta m = m_0 - m(t) = m_0(1-2^{-t/T}) = 6,97g.\)
Số mol urani bị phân rã là \(n = \frac{\Delta m}{A_{U}} = \frac{6,97}{238} = 0,0293 \text{mol}.\)
Dựa vào phương trình ta thấy cứ 1 hạt Urani bị phân rã sẽ tạo thành 1 hạt Thori. Suy ra \(n_{Th} = n_{urani}\)
Nhưu vậy khối lượng Thori tạo thành là \(m_{Th} = 0,0293.234 = 6,854 g.\)
chọn B
chọn câu B luôn !