K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

Tải Qanda về

28 tháng 11 2021

\(\frac{x-1}{x^2+5x};\frac{x+1}{x^2-25}\)

ta có: \(\frac{x-1}{x^2+5x}=\frac{x-1}{x\left(x+5\right)}\)

          \(\frac{x+1}{x^2-25}=\frac{x+1}{\left(x-5\right)\left(x+5\right)}\)

MTC: x(x-5).(x+5)

\(\frac{x-1}{x\left(x+5\right)_{\left(x-5\right)}}=\frac{\left(x-1\right)\left(x-5\right)}{x\left(x+5\right)\left(x-5\right)}=\frac{x^2-5x-x+5}{x\left(x+5\right)\left(x-5\right)}=\frac{x^2-4x+5}{x\left(x+5\right)\left(x-5\right)}\)

\(\frac{x+1}{\left(x-5\right)\left(x+5\right)_{\left(x\right)}}=\frac{x^2+x}{x\left(x-5\right)\left(x+5\right)}\)

Vậy ....

25 tháng 11 2015

\(a.\) Ta có: 

 \(MTC:\)  \(\left(x+1\right)\left(x+2\right)\)

 Do đó

\(\frac{3x}{x+1}=\frac{3x\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}\)

\(\frac{x+4}{x+2}=\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+2\right)}\)

\(b.\)  Ta có: 

\(x^2+x=x\left(x+1\right)\)

\(x^2-1=\left(x-1\right)\left(x+1\right)\)

nên  \(MTC:\)  \(x\left(x-1\right)\left(x+1\right)\)

Do đó:

\(\frac{5}{x^2+x}=\frac{5}{x\left(x+1\right)}=\frac{5\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\frac{6}{x^2-1}=\frac{6}{\left(x-1\right)\left(x+1\right)}=\frac{6x}{x\left(x-1\right)\left(x+1\right)}\)

\(c.\)  Ta có:

\(x^2-5x+4=x^2-x-4x+4=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

\(2x^2-8x=2x\left(x-4\right)\)

nên  \(MTC:\)  \(2x\left(x-1\right)\left(x-4\right)\)

Do đó: 

\(\frac{4}{x^2-5x+4}=\frac{4}{\left(x-1\right)\left(x-4\right)}=\frac{8x}{2x\left(x-1\right)\left(x-4\right)}\)

\(\frac{x+1}{2x^2-8x}=\frac{x+1}{2x\left(x-4\right)}=\frac{\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x-4\right)}\)

 

27 tháng 11 2020

Làm nốt d :P

\(\frac{x+3}{2x^2-15x-8};\frac{3}{x^2-8x}\)

Ta có : \(2x^2-15x-8=\left(2x+1\right)\left(x-8\right)\)

\(x^2-8x=x\left(x-8\right)\)

MTC : \(x\left(x-8\right)\left(2x+1\right)\)

\(\frac{x+3}{2x^2-15x-8}=\frac{x+3}{\left(2x+1\right)\left(x-8\right)}=\frac{x^2+3x}{x\left(x-8\right)\left(2x+1\right)}\)

\(\frac{3}{x^2-8x}=\frac{3}{x\left(x-8\right)}=\frac{6x+3}{x\left(x-8\right)\left(2x+1\right)}\)

23 tháng 11 2020

MTC : ( x - 1 )( x2 + x + 1 )

Ta có : \(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)

25 tháng 11 2020

Hnay mới học thì hnay trả lời nhá :P

\(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1}\)

Ta có : \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2+x+1=x^2+x+1\)

MTC : \(\left(x-1\right)\left(x^2+x+1\right)\)

\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

quy

đồng

cx

ko bt làm á

24 tháng 11 2018

Giúp mk vs các bạn ới!

23 tháng 11 2022

a: \(\dfrac{x-1}{x+1}=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)

\(\dfrac{x+1}{x-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

\(\dfrac{1}{x^2-1}=\dfrac{1}{\left(x+1\right)\left(x-1\right)}\)

b: \(\dfrac{x}{x^3-xy^2}=\dfrac{1}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)^2}\)

\(\dfrac{1}{\left(x+y\right)^2}=\dfrac{x-y}{\left(x+y\right)^2\cdot\left(x-y\right)}\)

c: \(\dfrac{5x^2}{x^2+5x+6}=\dfrac{5x^2}{\left(x+2\right)\left(x+3\right)}=\dfrac{5x^2\left(x+5\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)}\)

\(\dfrac{2x+3}{x^2+7x+10}=\dfrac{2x+3}{\left(x+2\right)\left(x+5\right)}=\dfrac{\left(2x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)}\)

\(-5=\dfrac{-5\left(x+2\right)\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)}\)

24 tháng 11 2017

\(\dfrac{1}{x^2-4x-5}=\dfrac{1}{\left(x^2+x\right)-\left(5x+5\right)}=\dfrac{1}{x\left(x+1\right)-5\left(x+1\right)}=\dfrac{1}{\left(x+1\right)\left(x-5\right)}\)

\(\dfrac{2}{x^2-2x-x}=\dfrac{2}{x^2-3x}=\dfrac{2}{x\left(x-3\right)}\)

MTC \(x\left(x-3\right)\left(x+1\right)\left(x-5\right)\)

\(\dfrac{1}{x^2-4x-5}=\dfrac{1}{\left(x^2+x\right)-\left(5x+5\right)}=\dfrac{1}{x\left(x+1\right)-5\left(x+1\right)}\\ =\dfrac{1}{\left(x+1\right)\left(x-5\right)}=\dfrac{x\left(x-3\right)}{x\left(x-3\right)\left(x+1\right)\left(x-5\right)}=\dfrac{x^2-3x}{x\left(x-3\right)\left(x+1\right)\left(x-5\right)}\)

\(\dfrac{2}{x^2-2x-x}=\dfrac{2}{x^2-3x}=\dfrac{2}{x\left(x-3\right)}=\dfrac{2\left(x+1\right)\left(x-5\right)}{x\left(x-3\right)\left(x+1\right)\left(x-5\right)}=\dfrac{\left(2x+2\right)\left(x-5\right)}{x\left(x-3\right)\left(x+1\right)\left(x-5\right)}\\ =\dfrac{2x^2-10x+2x-10}{x\left(x-3\right)\left(x+1\right)\left(x-5\right)}=\dfrac{2x^2-8x-10}{x\left(x-3\right)\left(x+1\right)\left(x-5\right)}\)

23 tháng 12 2020

a) Điều kiện: \(x\ne\pm1\)

 \(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)

\(B=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}-\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{-4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{x^2-x-x+1-x^2-x-x-1+4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{-4x+4}{\left(x-1\right).\left(x+1\right)}=\frac{-4.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}=\frac{-4}{x+1}\)

b) \(x^2-x=0\Leftrightarrow x.\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Khi  \(x=0\Leftrightarrow\frac{-4}{0-1}=\frac{-4}{-1}=4\)

Khi \(x=1\Leftrightarrow\frac{-4}{1-1}=0\)

c) \(\frac{-4}{x+1}=-3\Leftrightarrow-3.\left(x+1\right)=-4\Leftrightarrow x+1=\frac{4}{3}\Leftrightarrow x=\frac{1}{3}\)