Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)
3/x^2-9=6/2(x+3)(x-3)
b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)
\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)
c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)
x/x-y=x^2/x(x-y)
e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{x\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\cdot\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)
\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)
\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x-y}{x^2+y^2}=\dfrac{x\left(x-y\right)}{\left(x^2+y^2\right)^2}\)
a: \(=\dfrac{4x^2+4x+1-\left(4x^2-4x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{2x+1}\cdot\dfrac{5}{4x}=\dfrac{10}{2x+1}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
\(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)
\(=\dfrac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(2x+y\right)}{y\left(2x+y\right)x\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x-y}{y}\)
ĐKXĐ: \(x,y\ne0;x\ne-\dfrac{1}{2}y\)
\(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)
\(=\dfrac{x\left(x^3-y^3\right)}{y.\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y.\left(2x+y\right)}.\dfrac{2x+y}{x.\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x-y}{y}\left(x;2x+y;x^2+xy+y^2\ne0\right)\)
a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1\right)\left(2x+1\right)}{2x^2-1}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1-2x-1\right)\left(2x+1+2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{4x}{2x^2-1}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{5}{2x+1}\)
b) \(\left(\dfrac{1}{x^2+1}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1}{x^2+1}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{x^2-2x+1}{x}\right)\)
\(=\dfrac{\left(x-1\right)^2}{x^2+1}.\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x}{x^2+1}\)
c) d) Tự làm đi mình làm biếng quass >.< ^^