Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)
\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)
b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)
\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)
\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)
\(MTC:\left(x-3\right)^2\left(x^2+3x+9\right)\)
\(\frac{x}{x^3-27}=\frac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\frac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{2x}{x^2-6x+9}=\frac{2x}{\left(x-3\right)^2}=\frac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{1}{x^2+3x+9}=\frac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(MTC:2\left(x-1\right)\left(x+1\right)\)
\(\frac{x-1}{2x+2}=\frac{x-1}{2\left(x+1\right)}=\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{x+1}{2x-2}=\frac{x+1}{2\left(x-1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{1}{1-x^2}=-\frac{1}{\left(x-1\right)\left(x+1\right)}=-\frac{2}{2\left(x-1\right)\left(x+1\right)}\)
\(MTC:2\left(x+1\right)\left(x^2-x+1\right)\)
\(\frac{1}{x^3+1}=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{3}{2x+2}=\frac{3}{2\left(x+1\right)}=\frac{3\left(x^2-x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x^2-x+1}=\frac{4\left(x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
câu 1:
x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)
Câu 2 :
a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)
\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)
\(=x^2-2x+1\)
b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)
\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)
Câu 3 :
Sửa đề :
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)