Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
b) \(\hept{\begin{cases}\frac{5}{2x+6}=\frac{5}{2\left(x+3\right)}\\\frac{3}{x^2-9}=\frac{3}{\left(x+3\right)\left(x-3\right)}\end{cases}}\)
\(\Rightarrow MTC=2\left(x+3\right)\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{5}{2\left(x+3\right)}=\frac{5\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}\\\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{6}{2\left(x-2\right)\left(x+3\right)}\end{cases}}\)
CÒn lại tương tự nhé !
a) \(\frac{3x+6}{x^2-4}=\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3}{x-2}\)( ĐKXĐ : x ≠ ±2 )
\(\frac{2x+6}{x^3+3x^2-9x-27}=\frac{2\left(x+3\right)}{x^2\left(x+3\right)-9\left(x+3\right)}=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x^2-9\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)( ĐKXĐ : x ≠ ±3 )
MTC : ( x - 2 )( x - 3 )( x + 3 )
=> \(\hept{\begin{cases}\frac{3}{x-2}=\frac{3\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3\left(x^2-9\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3x-27}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\\\frac{2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{4x-4}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\end{cases}}\)
b) \(\frac{x^2-4x+4}{2x^2-3x+1}=\frac{\left(x-2\right)^2}{2x^2-2x-x+1}=\frac{\left(x-2\right)^2}{2x\left(x-1\right)-\left(x-1\right)}=\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}\)( ĐKXĐ : \(\hept{\begin{cases}x\ne1\\x\ne\frac{1}{2}\end{cases}}\))
\(\frac{x+4}{2x-2}=\frac{x+4}{2\left(x-1\right)}\)( ĐKXĐ : x ≠ 1 )
MTC : \(2\left(x-1\right)\left(2x-1\right)\)
=> \(\hept{\begin{cases}\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}=\frac{2\left(x^2-4x+4\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2-8x+8}{2\left(x-1\right)\left(2x-1\right)}\\\frac{x+4}{2\left(x-1\right)}=\frac{\left(x+4\right)\left(2x-1\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2+7x-4}{2\left(x-1\right)\left(2x-1\right)}\end{cases}}\)
c) \(\frac{6a}{a-b}\)( ĐKXĐ : a ≠ b ) ; \(\frac{2b}{b-a}=\frac{-2b}{a-b}\)( ĐKXĐ : a ≠ b) ; \(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)( ĐKXĐ : a ≠ ±b )
MTC : \(\left(a-b\right)\left(a+b\right)\)
=> \(\frac{6a}{a-b}=\frac{6a\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{6a^2+6ab}{\left(a-b\right)\left(a+b\right)}\)
\(\frac{-2b}{a-b}=\frac{-2b\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{-2ab-2b^2}{\left(a-b\right)\left(a+b\right)}\)
\(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)
d) \(\frac{x}{x^2+11x+30}=\frac{x}{x^2+5x+6x+30}=\frac{x}{x\left(x+5\right)+6\left(x+5\right)}=\frac{x}{\left(x+5\right)\left(x+6\right)}\)( ĐKXĐ : x ≠ -5 ; x ≠ -6 )
\(\frac{5}{x^2+9x+20}=\frac{5}{x^2+4x+5x+20}=\frac{5}{x\left(x+4\right)+5\left(x+4\right)}=\frac{5}{\left(x+4\right)\left(x+5\right)}\)( ĐKXĐ : x ≠ -4 ; x ≠ -5 )
MTC : \(\left(x+4\right)\left(x+5\right)\left(x+6\right)\)
=> \(\hept{\begin{cases}\frac{x}{\left(x+5\right)\left(x+6\right)}=\frac{x\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{x^2+4x}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\\\frac{5}{\left(x+4\right)\left(x+5\right)}=\frac{5\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{5x+30}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\end{cases}}\)
Sai chỗ nào bạn bỏ qua nhé
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)