Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: -5/5=-1=-7/7
8/7=8/7
b: -3/15=-1/5=-6/30
5/6=25/30
c: -34/136=-1/4=-9/36
-12/108=-1/9=-4/36
26/-156=-1/6=-6/36
a) \(\dfrac{1}{6};\dfrac{1}{3};\dfrac{1}{2};...\)
\(\Rightarrow\dfrac{1}{6};\dfrac{2}{6};\dfrac{3}{6};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{4}{6}\)
b) \(\dfrac{1}{8};\dfrac{5}{24};\dfrac{7}{24};...\)
\(\Rightarrow\dfrac{3}{24};\dfrac{5}{24};\dfrac{7}{24};...\)
Dãy có quy luật tăng dần lên 2 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{9}{24}\)
c) \(\dfrac{1}{5};\dfrac{1}{4};\dfrac{1}{3};...\)
\(\dfrac{4}{20};\dfrac{5}{20};\dfrac{6}{20};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{7}{20}\)
d) \(\dfrac{4}{15};\dfrac{3}{10};\dfrac{1}{3};...\)
\(\Rightarrow\dfrac{8}{30};\dfrac{9}{30};\dfrac{11}{30};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{12}{30}\)
a ,mẫu số chung nhỏ nhất là 35
b,mẫu số chung nhỏ nhất là 75
c,mẫu số chung nhỏ nhất là 24
a ,mẫu số chung nhỏ nhất là 35
b,mẫu số chung nhỏ nhất là 75
c,mẫu số chung nhỏ nhất là 24
a: \(\dfrac{-7}{6}=\dfrac{-7\cdot3}{6\cdot3}=\dfrac{-21}{18}\)
\(\dfrac{-11}{9}=\dfrac{-11\cdot2}{9\cdot2}=\dfrac{-22}{18}\)
mà -21>-22
nên \(-\dfrac{7}{6}>-\dfrac{11}{9}\)
b: \(\dfrac{5}{-7}=\dfrac{-5}{7}=\dfrac{-5\cdot5}{7\cdot5}=\dfrac{-25}{35}\)
\(\dfrac{-4}{5}=\dfrac{-4\cdot7}{5\cdot7}=\dfrac{-28}{35}\)
mà -25>-28
nên \(\dfrac{5}{-7}>\dfrac{-4}{5}\)
c: \(\dfrac{-8}{7}< -1\)
\(-1< -\dfrac{2}{5}\)
Do đó: \(-\dfrac{8}{7}< -\dfrac{2}{5}\)
d: \(-\dfrac{2}{5}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(-\dfrac{2}{5}< \dfrac{1}{3}\)
Ta có: \(\dfrac{5}{7} = \dfrac{{5.4}}{{7.4}} = \dfrac{{20}}{{28}}\) và \(\dfrac{{ - 3}}{4} = \dfrac{{ - 3.7}}{{4.7}} = \dfrac{{ - 21}}{{28}}\)
Như vậy, \(\dfrac{{20}}{{28}} + \dfrac{{ - 21}}{{28}} = \dfrac{{20 + \left( { - 21} \right)}}{{28}} = \dfrac{-1}{{28}}\)
a)\(\dfrac{-36}{63};\dfrac{56}{63};\dfrac{-30}{63}\)
b)\(\dfrac{110}{264};\dfrac{21}{264}\)
a)
b) Mẫu số chung là BCNN (5, 6) = 30. Do đó:
c) Mẫu số chung là BCNN (7, 15) = 105. Do đó:
a) −55,87−55,87
Rút gọn: −55=−1−55=−1
MC: 7
Quy đồng ta được:
−1=−77−1=−77 và 8787
b) 3,−35,−563,−35,−56
MC: 30
Thừa số phụ thứ nhất là: 30: 1 = 30
Thừa số phụ thứ hai là: 30 : 5 = 6
Thừa số phụ thứ ba là: 30 : 6 = 5
Quy đồng ta được:
3=31=3.303=903−35=(−3).65.6=−1830−56=(−5).56.5=−25303=31=3.303=903−35=(−3).65.6=−1830−56=(−5).56.5=−2530
c) −97,−1915,−1−97,−1915,−1
MC: 15. 7 = 105
Thừa số phụ thứ nhất là: 105 : 7 = 15
Thừa số phụ thứ hai là: 105 : 15 = 7
Thừa số phụ thứ ba là: 105 : 1 = 105
Quy đồng ta được:
−97=(−9).157.15=−135105−1915=(−19).715.7=−133105−1=−11=(−1).1051.105=−105105−97=(−9).157.15=−135105−1915=(−19).715.7=−133105−1=−11=(−1).1051.105=−105105
a) Ta có BCNN(3,7)=21
Thừa số phụ: 21:3=7 và 21:7=3
\(\dfrac{2}{3} = \dfrac{{2.7}}{{3.7}} = \dfrac{{14}}{{21}}\) và \(\dfrac{{ - 6}}{7} = \dfrac{{ - 6.3}}{{7.3}} = \dfrac{{ - 18}}{{21}}\)
b) Ta có \(BCNN\left( {\left( {{2^2}{{.3}^2}} \right),\left( {{2^2}.3} \right)} \right) = {2^2}{.3^2}\)
Thừa số phụ \(\left( {{2^2}{{.3}^2}} \right):\left( {{2^2}.3^2} \right) = 1\) và \(\left( {{2^2}{{.3}^2}} \right):\left( {{2^2}.3} \right) = 3\)
\(\dfrac{5}{{{2^2}{{.3}^2}}}\) và \(\dfrac{{ - 7}}{{{2^2}.3}} = \dfrac{{ - 7.3}}{{{2^2}{{.3}^2}}} = \dfrac{{ - 21}}{{{2^2}{{.3}^2}}}\)