K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(MH \bot \left( P \right),O \in \left( P \right)\) nên hình chiếu của đường thẳng \(MO\) trên mặt phẳng \(\left( P \right)\) là đường thẳng \(HO\)

b) Góc giữa đường thẳng \(MO\) và hình chiếu của đường thẳng đó trên mặt phẳng \(\left( P \right)\) là góc \(\widehat {MOH}\).

21 tháng 8 2023

tham khảo:

a) Hình chiếu b' của b trên (P) là A'B'

b)  a⊥mp(b,b′)

b⊥b′

c) a⊥mp(b,b′)

a⊥b

a: Gọi \(A,B\in a\)

A',B' lần lượt là hình chiếu của A,B trên (P)

\(d\subset\left(P\right)\) nên \(AB\subset\left(P\right)\)

=>d vuông góc A'A

Do đó: nếu d vuông góc a' thì d vuông góc mp(a,a')

=>d vuông góc a

b: Nếu d vuông góc a thì d vuông góc mp(a,a')

=>d vuông góc a'

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}AH \bot \left( P \right)\\BK \bot \left( P \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( P \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

b) Ta có:

\(\left. \begin{array}{l}AH \bot \left( Q \right)\\BK \bot \left( Q \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( Q \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

16 tháng 8 2023

tham khảo:

a) AA’ vuông góc với mặt phẳng (P)

b) Nếu đường thẳng a vuông góc với mặt phẳng (P) thì hình chiếu của a trên (P) là giao điểm của a với (P).

a: \(a\perp\left(Q\right)\)

b: Hai mặt phẳng (P) và (Q) có vuông góc với nhau

16 tháng 8 2023

tham khảo:

a) Vì M', N' tương ứng là hình chiếu của M, N trên mặt phẳng (P) nên hình chiếu của a trên mặt phẳng (P) là a’ đường thẳng đi qua hai điểm M', N'.

b) b vuông góc với M'N' và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); M'N' cắt MM' tại M' do đó b vuông góc mặt phẳng tạo bởi M'N', MM' suy ra b có vuông góc với a.

c) b vuông góc với a và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); a cắt MM' tại M do đó b vuông góc mặt phẳng tạo bởi a, MM' suy ra b có vuông góc với M'N'.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

• Ta có:

\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\\AB \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\)

Vậy \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).

• Ta có:

\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

Vậy \(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).

Lại có \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).

Vậy đường thẳng \(AB\) là hình chiếu vuông góc của đường thẳng \(CD\) trên mặt phẳng \(\left( {SAB} \right)\).

• Ta có:

\(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).

\(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).

\(S \in \left( {SAB} \right)\)

Vậy tam giác \(SAB\) là hình chiếu vuông góc của tam giác \(SCD\) trên mặt phẳng \(\left( {SAB} \right)\).

20 tháng 11 2018

a: M' thay đổi trên a'

b: Ảnh của a qua phép chiếu theo phương l trên mp(P) là đường thẳng a'