K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

Tự vẽ hình nha

a,Xét hai tam giác CAM và CMB

Ta có:MA=MB(M là trung điểm)

          CM là cạnh chung

          góc CMB=góc CMA

    Vậy tam  giác CMB và CMA bằng nhau

Suy ra AC=BC(2 cạnh tương ứng)

b,Từ tam giác CMB và CMA bằng nhau 

      suy ra CA=CB(cạnh tương ứng)

,Xét hai tam giác ACD và BCD

     DC là cạnh chung

     AC=CB(chứng minh trên)

     góc ADC=góc BDC

Suy ra tam giác ACD =tam giác BCD

 

14 tháng 2 2017

A B M x x' D C E

a) "Trên tia Mx lấy điểm E" thành "Trên tia Mx' lấy điểm E"

BL:

Xét \(\Delta ACM\)\(\Delta BCM\) có:

\(\widehat{AMC}=\widehat{BMC}=90^o\)

CM cạnh chung

AM = BM (suy từ gt)

\(\Rightarrow\) \(\Delta ACM=\Delta BCM\left(cgv-cgv\right)\)

\(\Rightarrow AC=BC\) (t/ư)

b) Vì \(\Delta ACM=\Delta BCM\) (câu a)

\(\Rightarrow\widehat{ACM}=\widehat{BCM}\) (t/ư) và AC = BC (2 cạnh t/ư)

Ta có: \(\widehat{ACM}+\widehat{ACD}=180^o\) (kề bù)

\(\widehat{BCM}+\widehat{BCD}=180^o\) (kề bù)

\(\Rightarrow\widehat{ACD}=\widehat{BCD}\)

Xét \(\Delta ACD\)\(\Delta BCD\) có:

AC = BC (c/m trên)

\(\widehat{ACD}=\widehat{BCD}\) (c/m trên)

CD cạnh chung

\(\Rightarrow\Delta ACD=\Delta BCD\left(c.g.c\right)\)

c) Do \(\Delta ACD=\Delta BCD\) (câu b)

\(\Rightarrow AD=BD\) (2 cạnh t/ư)

\(\widehat{ADC}=\widehat{BDC}\) (2 góc t/ư)

hay \(\widehat{ADE}=\widehat{BDE}\)

Xét \(\Delta DAE\)\(\Delta DBE\) có:

AD = BD (c/m trên)

\(\widehat{ADE}=\widehat{BDE}\) (c/ trên)

DE chung

\(\Rightarrow\Delta DAE=\Delta DBE\left(c.g.c\right)\)ư

\(\Rightarrow\widehat{EAD}=\widehat{EBD}\) (t/ư)

14 tháng 2 2017

A B x x' D C M E

a, xét tam giác ACM và tam giác BCM ta có:

AM=MB (giả thiết)

góc AMC = góc BMC = 900 (giả thiết)

MC là cạnh chung

suy ra: tam giác AMC = tam giác BMC ( hai cạnh góc vuông)

suy ra: AC=CB (hai cạnh tương ứng)

b, xét tam giác ADM và tam giác BDM ta có:

AM=MB(giả thiết)

MD là cạnh chung

góc AMD= góc BMD = 900 (giả thiết)

suy ra : tam giác ADM = tam giác BDM(hai cạnh góc vuông)

theo câu a, ta có:

tam giác ACM= tam giác BCM

suy ra : tam giác ADM-ACM = BDM-BCM

suy ra: ADC=BDC

c, tương tự câu b,

chứng minh tam giác AEM= tam giác BEM

suy ra: tam giác AEM+ ADM = BEM+BDM

suy ra : tam giác EAD= tam giác EBD

suy ra: góc EAD = EBD ( hai goác tương ứng)

7 tháng 8 2019

x' x A B D M C

a) Hai tam giác vuông AMC và BMC có:

AM = BM (vì M là trung điểm của AB)

 \(\widehat{AMC}=\widehat{BMC}=90^o\left(vi,x'x\perp AB\right)\)

MC là cạnh chung.

Vậy \(\Delta AMC=\Delta BMC\left(c.g.c\right)\)

Suy ra AC = CB

b. Do \(\Delta AMC=\Delta BMC\)nên ta còn có:

\(\widehat{ACM}=\widehat{BCM}\)

Góc ACM kề bù với góc ACD, góc BCM kề bù với góc BDC.

\(\widehat{ACD}=180^o-\widehat{AMC}va\widehat{BCD}=180^o-\widehat{BCM}\)

Suy ra \(\widehat{ACD}=\widehat{BCD}\)

Hai tam giác ACD và BCD có:

AC = BC(câu a)

\(\widehat{ACD}=\widehat{BCD}\)(chứng minh trên) 

CD là cạnh chung.

Vậy \(\Delta ACD=\Delta BCD\left(c.g.c\right)\)

c)Từ hai tam giác bằng nhau ACD và BCD ta suy ra:

\(\widehat{AD}=\widehat{BD}\)là \(\widehat{ADC}=\widehat{BDC}\)hay \(\widehat{ADE}=\widehat{BDE}\)

Hai tam giác ADE và BDE có:

\(AD=BD,\widehat{ADE}=\widehat{BDE},DE\)là cạnh chung

Vậy \(\Delta ADE=\Delta BDE\left(c.g.c\right)\)

Suy ra: \(\widehat{EAD}=\widehat{EBD}\)

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.a.Cm DE//BCb.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=ENc.Cm tam giác AMN là tam giác când.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC...
Đọc tiếp

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.

a.Cm DE//BC

b.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=EN

c.Cm tam giác AMN là tam giác cân

d.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.

2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC ở M .Trên tia đối của tia AM lấy điểm N sao cho AN=BM.CMR:

a. góc AMC=gócBAC

b.Tam giác ABM =tam giác CAN 

c.Tam giác MNC vuông góc cân ở C 

3.Cho đoạn thẳng AB và điểm C nằm giữa A và  B.Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BCE ,Gọi M,N lần lượt  là trung điểm của AE và BD .CMR:

a. AE=BD

b. Tam giác CME=tam giác CNB

c. Tam giác MNE là tam giác đều

4.Cho tam giác ABC vuông cân tại A .Trên cạnh AB lấy điểm D,trên cạnh AC lấy điểm E sao cho AD=AE.Các đoạn thẳng vuông goác kẻ từ A và E với CD cắt BC ở G và H .Đoạn thẳng EH và AB cắt nhau ở M.Đoạn thẳng kẻ từ A vuông góc với BC cắt MH ở I.Cm:

a.Tam giác ACD=tam giác AME

b.Tam giác AGB=tam giác MIA

c. BG=GH

5.Cho tam giác ABC cân  ở A,trên cạnh BC lấy điểm D ,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường vuông góc với BC cắt ở A ,từ E kẻ đường vuông góc với BC cắt AC ở N.Cm:

a.MD=NE

b. MN cắt DE ở I .Cm I là trung điểm của DE.

c. TừC kẻ đường vuông góc với AC ,từ B kẻ đường vuông góc với AB ,chúng cắt nhau tại O .Cm AO là đường trung trực của BC.

 

 

giúp mk vs nha,mk cảm ơn nhju hjhj

 

 

1
20 tháng 7 2018

4,

a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A. 
AD = AE (gt) 
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc) 
=> tgiácACD = tgiácAME (g.c.g) 
b/ ta có: AG//EH (cùng vuông góc với CD) 
=> AG // IH 
mà gt => AI // GH 
vậy AGHI là hình bình hành 
=>AG = IH. 
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME 
=> AM = AC = AB 
=> A là trung điểm BM, mà AI // BC 
=> AI là đường trung bình của tgiác MBH 
=> I là trung điểm của MH. 
vậy: IM = IH = AG 
có: AM = AB 
góc BAG = góc AMI (so le trong) 
=> tgiác AGB = tgiác MIA ( c.g.c) 
c/ có AG//MH, A là trung điểm BM 
=> AG là đường trung bình của tgiácBMH 
=> G là trung điểm BH 
hay BG = GH.