Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ACI và tam giác BCI , có
CI là cạnh chung
AC = BC
AI= BI
=> tam giác ACI = tam giác BCI
Xét tam giác ACD và tam giác BCD , có
CD là cạnh chung
AD = BD
AC =BC
=> tam giác ACD = tam giác BCD
Xét tam giác ADI và tam giác BDI , có
DI là cạnh chung
AD = BD
AI = BI
=> tam giác ADI = tam giác BDI
ok 3 cặp nha
A B I O C D
Vì ID là tia phân giác của đoạn thẳng AB
=> AD = BD
AI = BI
Xét ∆ AID và ∆ BID có :
AD = BD ( cmt )
ID là cạnh chung
AI = BI ( cmt )
=> ∆ AID = ∆ BID ( c.c.c )
Xét ∆ ACI và ∆ IBC có :
AC = BC ( theo hình vẽ )
IC là cạnh chung
AI = BI ( cmt )
=> ∆ ACI = ∆ IBC ( c.c.c )
Xét ∆ ACD và ∆ BCD có :
AD = BD ( cmt )
CD là cạnh chung
AC = BC ( cmt )
=> ∆ ACD = ∆ BCD ( c.c.c )
Vậy có 3 cặp tam giác bằng nhau
Cũng có thể chứng minh theo cách cạnh - góc - cạnh nhưng mình thích cạnh - cạnh - cạnh hơn :3
Có hai trường hợp:
+ ΔAIC = ΔBIC (c.g.c) vì:
AI = IB (gt)
∠AIC = ∠BIC = 90o
CI chung.
+ ΔAID = ΔBID(c.g.c) vì:
AI = ID (gt)
∠AID = ∠BID = 90o
DI chung.
+ ΔACD = ΔBCD(c.c.c) vì:
AC = BC (Lấy từ ΔAIC = ΔBIC)
AD = BD (Lấy từ ΔAID = ΔBID)
CD chung
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC
b: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CI chung
IA=IB
Do đó: ΔCIA=ΔCIB
Suy ra: \(\widehat{ACI}=\widehat{BCI}\)
hay CI là tia phân giác của góc ACB
nhớ giải thích vì sao !!! ( mặt dù câu hỏi k kêu , nhưng cũng phải giải thích ms đúng !! )
Theo bài ra , ta có :
d vuông góc với a
mà d' cx vuông góc vs a
=) d' và d cùng vuông góc vs 1 đng thẳng a
=) d // d'
Vì d // d'
=) d và d' ko cắt nhau
Theo bài ra , ta có :
d vuông góc với a
mà d' cx vuông góc vs a
=) d' và d cùng vuông góc vs 1 đng thẳng a
=) d // d'
Vì d // d'
=) d và d' khong cắt nhau
Xét tam giác ACI và tam giác BCI , có
CI là cạnh chung
AC = BC
AI= BI
=> tam giác ACI = tam giác BCI
Xét tam giác ACD và tam giác BCD , có
CD là cạnh chung
AD = BD
AC =BC
=> tam giác ACD = tam giác BCD
Xét tam giác ADI và tam giác BDI , có
DI là cạnh chung
AD = BD
AI = BI
=> tam giác ADI = tam giác BDI
ok 3 cặp nha thư
Có hai trường hợp:
+ ΔAIC = ΔBIC (c.g.c) vì:
AI = IB (gt)
∠AIC = ∠BIC = 90o
CI chung.
+ ΔAID = ΔBID(c.g.c) vì:
AI = ID (gt)
∠AID = ∠BID = 90o
DI chung.
+ ΔACD = ΔBCD(c.c.c) vì:
AC = BC (Lấy từ ΔAIC = ΔBIC)
AD = BD (Lấy từ ΔAID = ΔBID)
CD chung