K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sai đề rồi bạn ở đa thức B cộng 3 hay là trừ 3?

20 tháng 6 2020

phần a là phần P nhé bn

mink cảm ơn

11 tháng 4 2016

miumiu

19 tháng 4 2019

a,

*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)

\(P(x)=-3x^2+7x-x^3-1\)

\(P(x)=-x^3-3x^2+7x-1\)

* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)

\(Q(x)=3x^4-x^2-x^3-2x-1\)

\(Q(x)=3x^4-x^3-x^2-1\)

b, \(M(x)=P(x)-Q(x)\)

\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)

\(M(x)=-2x^2+7x-3x^4\)

12 tháng 3 2019

a,P (x)+Q (x)+Q (x)=(3x-2x2-2+6x3)+(3x2-x-2x3+4)+(1+4x3-2x)

=3x-2x2-2+6x3+3x2-x-2x3+4+1+4x3-2x

=(3x-x-2x)+(-2x2+3x2+3x2)+(-2+4+1)+(6x3-2x3+4x3)

=4x2+3+8x3

b,P (x)-Q (x)-R (x)=(3x-2x2-2+6x3)-(3x2-x-2x3+4)-(1+4x3-2x)

=3x-2x2-2+6x3-3x2+x+2x3-4-1+4x3-2x

=(3x +x-2x)+(-2x2-3x2)+(-2-4-1)+(2x3+4x3)

=2x-5x2-7 +6x3

23 tháng 4 2017

\(a,\)Ta có : \(P\left(x\right)+Q\left(x\right)=-3x^4+5x^3+2x^2-7x+7-x^4-x^3+2x^2+6x^3-2x^4-3x-1\)

\(=\left(-3x^4-x^4-2x^4\right)+\left(5x^3-x^3+6x^3\right)+\left(2x^2+2x^2\right)+\left(-7x-3x\right)+\left(7-1\right)\)

\(=-6x^4+10x^3+4x^2-10x+6\)

\(P\left(x\right)-Q\left(x\right)=\left(-3x^4+5x^3+2x^2-7x+7\right)-\left(-x^4-x^3+2x^2+6x^3-2x^4-3x-1\right)\)

\(=-3x^4+5x^3+2x^2-7x+7+x^4+x^3-2x^2-6x^3+2x^4+3x+1\)

\(=\left(-3x^4+x^4+2x^4\right)+\left(5x^3+x^3-6x^3\right)+\left(2x^2-2x^2\right)+\left(-7x+3x\right)+\left(7+1\right)\)

\(=-4x+8\)

b, Nghiệm của đa thức P(x) - Q(x) là x = 2

21 tháng 6 2020

đúng đề bn ơi

banhqua

21 tháng 6 2020

có ghi đúng đề ko bạn

27 tháng 4 2017

a/ P(x) = x - 2\(x^2+3x^{^{ }5}+x^4+x-1\)

= \(3x^5+x^4-2x^{^{ }2}+\left(x+x\right)-1\)

= 3\(x^{^{ }5}+x^4-2x^2+2x-1\)

Q(x) = \(-3x^5+3x^{^{ }4}+2x^2-2x+3\)

b/ P(x) = 3\(x^5+x^4-2x^{^{ }2}+2x-1\)

Q(x) = -3\(x^5+3x^4+2x^2-2x+3\)

P(x) +Q(x) = 4\(x^4+2\)

P(x) - Q(x) = 6x\(^5\)-2x\(^4\) - 4x\(^2\) + 4x - 4

16 tháng 6 2020

Nãy h bn đã tài trợ cho mình 2 tb đaay ak :v

Lần sau nếu lm sai hãy cmt vào bài lm của bn đi ak :))

16 tháng 6 2020

a) P(x)=2x^3 - 3x + x^5 - 4x^3 + 4x - x^5 + x^2 - 2

= ( 2x^3 - 4x^3 ) + x^2 + ( -3x + 4x ) + ( x^5 - x^5 ) - 2

= -2x^3 + x^2 + x - 2

Q(x)=x^3 - 2x^2 + 3x +1 - 2x^2

= x^3 + ( -2x^2 - 2x^2 ) + 3x + 1

= x^3 - 4x^2 + 3x + 1

b) M(x) = P(x) - Q(x) = ( -2x^3 + x^2 + x - 2 ) - ( x^3 - 4x^2 + 3x + 1 )

= -2x^3 + x^2 + x - 2 - x^3 + 4x^2 - 3x - 1

= ( -2x^3 - x^3 ) + ( x^2 + 4x^2 ) + ( x - 3x ) + ( - 2 - 1 )

= -3x^3 + 5x^2 - 2x - 3

c) Bậc M(x) là 3

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)