Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
olm sẽ hướng dẫn em làm bài này như sau:
Bước 1: em giải phương trình tìm; \(x\); y
Bước 2: thay\(x;y\) vào P
(\(x-1\))2022 + |y + 1| = 0
Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0 ∀ y
⇒ (\(x\) - 1)2022 + |y + 1| = 0
⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1)
Thay (1) vào P ta có:
12023.(-1)2022 : )(2.1- 1)2022 + 2023
= 1 + 2023
= 2024
\(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2022}+\left|x+y-z\right|=0\)
Ta có : \(\left(2x-1\right)^{2020}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2022}\ge0\forall x;\left|x+y-z\right|\ge0\forall x;y;z\)
Dấu bằng xảy ra <=> \(x=\frac{1}{2};y=\frac{2}{5};z=x+y=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)
Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)
P(x) có bậc là 4
Q(x) = x² - 2x + 1 - x²
= -2x + 1
Do đó Q(x) có bậc là 1
R(x) có bậc là 0
\(\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}=0\)
Vì \(\hept{\begin{cases}\left(x+1\right)^{2020}\ge0\forall x\\\left(2-3y\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^{2020}=0\\\left(2-3y\right)^{2022}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\3y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=\frac{2}{3}\end{cases}}\)
( x + 1 )2020 + ( 2 - 3y )2022 = 0
Ta có \(\hept{\begin{cases}\left(x+1\right)^{2020}\ge0\forall x\\\left(2-3y\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}\ge0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+1=0\\2-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=\frac{2}{3}\end{cases}}\)
Vậy x = -1 ; y = 2/3
Trừ biểu thức 2 cho biểu thức thứ 3 ta được:
[g(x)+h(x)]-[f(x)+g(x)] = 2x2-2x+1-x2+4x-2
<=> h(x)-f(x) = x2+2x-1
Lại có: h(x)+f(x) = x2+2x+1
=> 2.f(x) = x2+2x+1-x2-2x+1 = 2
=> f(x) = 1
Đáp số: f(x) = 1
a) f(x) + g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) + (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 - x5 - 3x2 + 1/2x + 1
= (x5 - x5) + (2x2 - 1/2x2 - 3x2) + (-1/2x + 1/2x) + (-5 + 1)
= -3/2x2 - 4
f(x) - g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) - (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 + x5 + 3x2 - 1/2x - 1
= (x5 + x5) + (2x2 - 1/2x2 + 3x2) + (-1/2 - 1/2x) + (-5 - 1)
= 2x5 + 9/2x2 - x - 6
b) f(x) + g(x) = -3/2x2 - 4
Ta có:
-3/2x2 > 0
=> -3/2x2 - 4 > 1 > 0
=> f(x) + g(x) vô nghiệm
a, ta có:
\(f\left(x\right)=x^5+2x^2-\frac{1}{2}x^2-5\)
\(=x^5+\frac{3}{2}x^2-\frac{1}{2}x-5\)
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4\)(t lm tắt nhé)
\(f\left(x\right)-g\left(x\right)=2x^5+\frac{9}{2}-x-6\)
b,Để f(x)+g(x) có nghiệm thì
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4=0\)
\(\Rightarrow-\frac{3}{2}x^2=4\)
\(\Rightarrow x^2=-2\)(k tồn tại)
vậy f(x)+g(x) k có nghiệm.
a , | 4x + 2020 | = 0
b , | 2x + 1/4 | + | -5 | = | -14 |
c , | 2020 - 5x | - | 3 | = - | -8 |
d , | x mũ 2 + 4x | = 0
e , | x-1 | + 3x = 1
g , | 2-3x | + 3x = 2
h , | 5x-4 | + 5x = 4
i , | x - 1/4 | - | 2x + 5 | = 0
k , | 5x - 7 | - | 8-5x | = 0
n , | x mũ 3 -
P(2)+P(1/2)=2*2-1=3
P(1/2)+P(2)=2*1/2-1=1
=>Ko tồn tại P(x) thỏa mãn đièu kiện