Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(x^2-y^2-2x+2y\)
\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(b)\)\(x^2+4y^2-25+4xy\)
\(=\left(x^2+4xy+4y^2\right)-25\)
\(=\left(x+2y\right)^2-25\)
\(=\left(x+2y-5\right)\left(x+2y+5\right)\)
Dumflinz
5x( x - y ) + 12x - 12y
= 5x( x - y ) + 12( x - y )
= ( x - y )( 5x + 12 )
x2 + 2xy - 9 + y2
= ( x2 + 2xy + y2 ) - 9
= ( x + y )2 - 32
= ( x + y - 3 )( x + y + 3 )
\(5x\left(x-y\right)+12x-12y\)
\(=5x\left(x-y\right)+12\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+12\right)\)
\(x^2+2xy-9+y^2\)
\(=\left(x^2+2xy+y^2\right)-9\)
\(=\left(x+y\right)^2-3^2\)
\(=\left(x+y-3\right)\left(x+y+3\right)\)
Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)
\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(8x^3+12x^2+6x+1=0.\)
\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)
\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)
\(=25x^2+45x+15+8+10x-40x-50x^2\)
\(=-25x^2+15x+23\)
\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
Bài 1:
a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
c)Đề sai hoàn toàn
d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)
f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)
g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)
i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
a, x(x-y)+2(x-y)=(x-y)(x+2)
b, \(x^2-6xy+9y^2=\left(x-3y\right)^2\)Thay x=16, y=2 có
\(x^2-6xy+9y^2=\left(x-3y\right)^2=\left(16-2\cdot3\right)^2=10^2=100\)
1: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
3: \(=18\left(m^2-2mn+n^2-4p^2\right)\)
\(=18\left(m-n-2p\right)\left(m-n+2p\right)\)
4: \(=9\left(a^2-2ab+b^2-4c^2\right)\)
\(=9\left(a-b-2c\right)\left(a-b+2c\right)\)
5: \(=\left(x-3y\right)\left(5a-8b\right)\)
6: \(=7\left(x^2-2xy+y^2-z^2\right)\)
\(=7\left(x-y-z\right)\left(x-y+z\right)\)
2: \(=a^2\left(a+3\right)+4\left(a+3\right)=\left(a+3\right)\left(a^2+4\right)\)
3: \(=\left(2a-1\right)^2-4b^2\)
\(=\left(2a-1-2b\right)\left(2a-1+2b\right)\)
4: \(=-\left(x^2+x-2\right)=-\left(x+2\right)\left(x-1\right)\)
5: \(=7\left(x^2-2xy^2+y^4\right)=7\left(x-y^2\right)^2\)
6: \(=\left(x+2\right)^2-y^2=\left(x+2+y\right)\left(x+2-y\right)\)
a, \(5x^2y+10xy=5xy\left(x+2\right)\)
b, \(x^2-2xy+y^2-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
c, \(x^3-8+2x\left(x-2\right)=\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(x^2+2x+4\right)+2x\right]=\left(x-2\right)\left(x+2\right)^2\)
d, \(x^4+x^2y^2+y^4\):<
a, 5xy( x + 2)
b, ( x - y -5 )(x-y+5)
c,( x-2)( x+ 2)2