K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

\(=4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)

\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\) (1)

Đặt: \(x^2+60=t\)

\(4\left(t+17x\right)\left(t+16x\right)-3x^2\)

\(=4t^2+132tx+1085x^2\)

\(=\left(4t^2+70xt\right)+\left(62xt+1085t^2\right)\)

\(=\left(2t+31x\right)\left(2t+35x\right)\)

\(=\left(2\left(x^2+60\right)+31x\right)\left(2\left(x^2+60\right)+35x\right)\)

\(=\left(2x+15\right)\left(2x+8\right)\)\(\left(2x^2+35x+120\right)\)

26 tháng 8 2019

có thiệt phát không biết làm không

17 tháng 4 2020

À thôi mik tự làm đc rồi ạ !

31 tháng 10 2016

Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha 

f(x)=3x3 – 7x2 + 17x–5f(x)

Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không  có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là  3x–13x–1. Nên
f(x)= 3x– 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)

= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5

= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
 

31 tháng 10 2016

ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7

2 tháng 8 2016

~~~~~e)~~~~~

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=v\)

Ta có: \(v.\left(v+1\right)-12\)

\(=v^2+v-12\)

\(=v^2-3v+4v-12\)

\(=v\left(v-3\right)+4\left(v-3\right)\)

\(=\left(v-3\right)\left(v+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

~~~~~g)~~~~~

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(nhân cái đầu vs cái cuối, hai cái giữa nhân vs nhau)

Đặt \(x^2+5x+5=t\)

Ta có: \(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

~~~~~h)~~~~~

\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)

Đặt \(x^2+2x+1=n\)

Ta có: \(\left(n-x\right)\left(n+x\right)+x^2\)

\(=n^2-x^2+x^2\)

\(=n^2\)

\(=\left(x^2+2x+1\right)^2\)

\(=\left(\left(x+1\right)^2\right)^2\)

\(=\left(x+1\right)^4\)

~~~~~~~~~~~~~~~~~~~~

(Mong là mình làm đúng, chúc you học tốt nha, tíck cho mìk với nhé!)

2 tháng 10 2017

a) Đặt \(x^2+3x+1=y\) khi đó ta có:

\(y\left(y-4\right)-5\)

\(=y^2-4y-5\)

\(=y\left(y-5\right)+\left(y-5\right)\)

\(=\left(y+1\right)\left(y-5\right)\)

Thay \(y=x^2+3x+1\):

\(\left(x^2+3x+1+1\right)\left(x^2+3x+1-5\right)\)

\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)

\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)

\(=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x+4\right)\)

b) Biến đổi 3 số sau có chứa x2 + 2x rồi đặt ẩn.

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=y'\)

Khi đó ta đc:

\(y'\left(y'+8\right)+15\)

\(=\left(y'\right)^2+8y'+15\)

\(=y'\left(y'+3\right)+5\left(y'+3\right)\)

\(=\left(y'+5\right)\left(y'+3\right)\)

....

d) \(x^2-2xy+y^2-7x+7y+12\)

Biến đổi chứa x - y rồi đặt ẩn.

2 tháng 10 2017

Đỗ thị như quỳnh: làm tương tự thôi mà, nếu bạn ko hiểu chỗ nào thì nói đi :)

trong sách 

nâng cao và 

phát triển toán 8

kìa

26 tháng 7 2018

Thì tui mới phải xin cách làm 

24 tháng 3 2020

a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)

=> \(a^2-2a+6a-12=0\)

=> \(a\left(a-2\right)+6\left(a-2\right)=0\)

=> \(\left(a+6\right)\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)

b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .

c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)

- Đặt \(x^2-4=a\)\(x^2-10=a-6\) ta được phương trình :

\(a\left(a-6\right)=72\)

=> \(a^2-6a-72=0\)

=> \(a^2+6a-12a-72=0\)

=> \(a\left(a+6\right)-12\left(a+6\right)=0\)

=> \(\left(a+6\right)\left(a-12\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)

- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)

d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)

=> \(a^2+a-42=0\)

=> \(a^2+7a-6a-42=0\)

=> \(a\left(a+7\right)-6\left(a+7\right)=0\)

=> \(\left(a-6\right)\left(a+7\right)=0\)

=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)

16 tháng 9 2018

T ko biết làm, chỉ hỏi liên thiên thôi :)))

Hủ phải không???? OvO Dưa Trong Cúc

16 tháng 9 2018

- Ko lẽ t có đồg bọn =))

11 tháng 9 2018

Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)

=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)

19 tháng 7 2017

Làm 1 câu các câu còn lại tương tự!

a, \(\left(x+2\right)\left(x-4\right)\left(x+6\right)\left(x-12\right)+36x^2\)

\(=\left[\left(x+2\right)\left(x-12\right)\right]\left[\left(x-4\right)\left(x+6\right)\right]+36x^2\)

\(=\left(x^2-12x+2x-24\right)\left(x^2+6x-4x-24\right)+36x^2\)

\(=\left(x^2-10x-24\right)\left(x^2+2x-24\right)+36x^2\)(1)

Đặt \(a=x^2-10x-24\Rightarrow a+12x=x^2+2x-24\)

\(\Rightarrow\left(1\right)=a\left(a+12x\right)+36x^2=a^2+12ax+36x^2\)

\(=a^2+6ax+6ax+36x^2=a\left(a+6x\right)+6x\left(a+6x\right)\)

\(=\left(a+6x\right)^2\)(*)

\(a=x^2-10x-24\) nên

(*)\(=\left(x^2-10x-24+6x\right)^2=\left(x^2-4x-24\right)^2\)

Vậy...........

3 tháng 8 2017

làm phần b đi